• Title/Summary/Keyword: user velocity

Search Result 172, Processing Time 0.024 seconds

Finite Element Analysis of a Cold forging Process Having a Floating Die (부유금형을 가진 냉간단조 공정의 유한요소해석)

  • 전만수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.103-107
    • /
    • 1999
  • In this paper, a computer simulation technique for the forging process having a floating die is presented. The penalty rigid-plastic finite element method is employed together with an iteratively force-balancing method, in which the convergence is achieved when the floating die part is in force equilibrium within the user-specified tolerance. The force balance is controled by adjusting the velocity of the floating die in an automatic manner. An application example of a three-stage cold forging process is given.

  • PDF

Control of Mobile Robot Using Voice Recognition and Wearable Module (음성인식과 웨어러블 모듈을 이용한 이동로봇 제어)

  • 정성호;서재용;김용민;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.37-40
    • /
    • 2002
  • Intelligent Wearable Module is intelligent system that arises when a human is part of the feedback loop of a computational process like a certain control system. Applied system is mobile robot. This paper represents the mobile robot control system remote controlled by Intelligent Wearable Module. So far, owing to the development of internet technologies, lots of remote control methods through internet have been proposed. To control a mobile robot through internet and guide it under unknown environment, We propose a control method activated by Intelligent Wearable Module. In a proposed system, PDA acts as a user interface to communicate with notebook as a controller of the mobile robot system using TCP/IP protocol, and the notebook controls the mobile robot system. Tlle information about the direction and velocity of the mobile robot feedbacks to the PDA and the PDA send new control method produced from the fuzzy inference engine.

  • PDF

A Study on the Optimal Design of Hydraulic Cab Tilting System by the Genetic Algorithm (유전자 알고리즘에 의한 전동 유압 CAB TILTING SYSTEM의 최적설계에 관한 연구)

  • 김수태;김진한;정상원;김규탁;이호길
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.67-72
    • /
    • 2004
  • Generally, the commercial truck has the hydraulic cab tilting system which absorb the vibrations and impacts of the cab. The cab tilting system is equipped for the maintenance and inspection of truck. And it is very important to help user's feeling of driving and convenience. But when the truck cab is tilted, existing model has serious problem of vibration. To satisfy customer's requirements for convenience, it is necessary to improve the hydraulic truck cab tilting system. In this study, the optimization of cab tilting system is carried out by using the G.A to reduce the vibration. The results show that the vibration is reduced and the mean velocity of tilting is improved. In conclusion the improved cab tilting system can be designed and the possibility of optimal design for cab tilting system by using the GA is testified.

  • PDF

A Design and Implementation of the Remote Control Black Box System of Vehicle Using the Smart Phone

  • Song, Jong-Geun;Jang, Won-Tae;Kim, Tae-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.665-670
    • /
    • 2010
  • This paper suggests the vehicle remote control on the basis of Smart Phone. In general, most smart phone is mounted with G-sensor to control the motion. G-sensor is able to control several directions and movements of velocity along with X, Y, and Z axis. To access remote location and data system, we can also utilize Wi-Fi communication as well as bluetooth communication. In this study, we propose the scheme that is the car management application by remote control via real-time monitoring on mobile device for user convenience.

Thermo-elastic Frictional Contact Analysis of Airplane Brakes (항공기 제동장치의 열탄성 마찰 접촉 해석)

  • Lee, Chang-Won;Choi, Yong-Gie;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.889-894
    • /
    • 2001
  • A three dimensional transient thermo-elastic frictional contact analysis of airplane brakes is performed. The velocity history of the airplane during braking is calculated from energy conservation law. ABAQUS code is used in the analysis, and user subroutines supported in the ABAQUS are coded to calculate the frictional heat generation between pads and linings attached to back/pressure plate and rotor, respectively. Numerical results are compared with experimental ones.

  • PDF

Characterization of three-dimensional ultrasonic anemometer using phase measurement (위상측정방식을 이용한 3차원 초음파 풍향풍속계의 특성분석)

  • Park, Do-Hyun;Yeh, Yun-Hae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.442-448
    • /
    • 2006
  • Ultrasonic anemometers using pulse envelope detection-based method are standard instruments in most meteorological studies. In this paper, a new phase measurement method is tried to achieve the enhanced resolution without changing dimensions. The measurement sensitivity, dynamic range, and measurement speed of the new instrument are 0.2 mm/s, 13.3 m/s, and 13 measurements/sec, respectively. A graphic user interface is added to show the velocity and direction of the wind with the speed of sound and temperature of the wind in the 3 dimensional space. The new anemometer could be useful for the measurement of the air speed, the flow of fluids, and even air flow inside the downtown buildings.

Integrated CAD/CAE System for Planing Hull Form Design (활주형 선박의 선형설계를 위한 통합 CAD/CAE 시스템)

  • 김태윤;김동준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.298-304
    • /
    • 2003
  • In this paper a free-form hull design program and performance prediction program for planing boat is introduced. This program enables the designer to do complex geometric hull shape design on a personal computer and accurately to predict power requirements for a given loading and velocity. For a free form design, Bezier curve model is adopted as a basic representation tool of curves and surfaces, and this program has versatile functions to do fairing jobs with a convenient graphical user interface. After creating a hull form the geometric data is provided in a manner compatible with a variety of analysis tools including 'Motion Analysis(by Zarnick)' for prediction of motion characteristics in regular waves, 'Running Attitude (by Savitsky)' for prediction of the running attitude and required power.

A realization of simulator for reliability verification on turbine controller for boiler feed Pump (급수펌프 구동용 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Jeong, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2307-2309
    • /
    • 2002
  • A simulator had been developed and will be used for reliability verification on turbine control programs for boiler feed pump in power plant prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and pump was realized and included in this simulator. Also, many design and operating data acquired from fields were utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss windage loss and inertia. A user can decide closing or opening velocity of steam stop valves and steam regulation valves. This simulator is able to generate steam pressure, turbine speed, pump power.

  • PDF

Nanolithography Using Haptic Interface in a Nanoscale Virtual Surface (햅틱인터페이스를 이용한 나노스케일 가상표면에서의 나노리소그래피)

  • Kim Sung-Gaun
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Nanoscale task such as nanolithography and nanoindenting is a challenging work that is beyond the capabilities of human sensing and precision. Since surface forces and intermolecular forces dominate over gravitational and other more intuitive forces of the macro world at the nanoscale, a user is not familiar with these novel nanoforce effects. In order to overcome this scaling barrier, haptic interfaces that consist of visual and force feedback at the macro world have been used with an Atomic Force Microscope (AFM) as a manipulator at the nanoscale. In this paper, a nanoscale virtual coupling (NSVC) concept is introduced and the relationship between performance and impedance scaling factors of velocity (or position) and force are explicitly represented. Experiments have been performed for nanoindenting and nanolithography with different materials in the nanoscale virtual surface. The interaction forces (non contact and contact nanoforces) between the AFM tip and the nano sample are transmitted to the operator through the haptic interface.

A Study on Motion Analysis for Increasing the Effectiveness of Resistive Exercise (저항성 운동의 효과 증대를 위한 동작 분석에 관한 연구)

  • Won, Chulho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.231-238
    • /
    • 2017
  • In this paper, we propose a method of analyzing exercise behavior to increase health care and exercise effect in personal fitness. In this study, a user wears a band-shaped acceleration sensor, an angular velocity sensor, and a motion sensor equipped with a geomagnetic module. Using the technique presented in this paper, we analyzed the motion of three resistive exercises which is consistent with previous studies. We have acquired a technique for processing personalized exercise information from the data generated in the resistive exercise situation.