• Title/Summary/Keyword: user capacity

Search Result 711, Processing Time 0.019 seconds

NoCOM: Near-Optimal Cell Outage Management for Guaranteeing User QoS (사용자 서비스 품질 보장을 위한 근접-최적 셀 아웃티지 관리 기법)

  • Lee, Kisong;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.794-799
    • /
    • 2015
  • To manage cell outage problem in indoor wireless communication systems, we should resolve the problem of abrupt network failure quickly. In this paper, we propose a near-optimal cell outage management (NoCOM) scheme to support seamless services to users. In consideration of system throughput, user fairness, and the guarantee of QoS simultaneously, the NoCOM scheme finds the solution of subchannel and power allocations using a non-convex optimization technique and allocates radio resources to users iteratively. Through intensive simulations, we verify the outstanding performances of the proposed NoCOM scheme with respect to the average cell capacity, user fairness, and computational complexity.

Degrees of Freedom of 3-user MIMO Interference Channels with Instantaneous Relay Using Interference Alignment

  • Qiang, Wang;Yuquan, Shu;Minhua, Dong;Ji, Xu;Xiaofeng, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1624-1641
    • /
    • 2015
  • Instantaneous relay (relay-without-delay) using interference alignment is a promising approach to neutralizing interference and improving system capacity. In Wang Chenwei's work, a 2-user scenario required both source and relay to access the global channel state information (CSI). This paper shows a new method of interference alignment improves the degrees of freedom (DoF) prominently for the 3-user MIMO interference channel with instantaneous relay. This new method is focused on the relay node that completes the alignment interference neutralization so the global CSI is obtained only once and the pressure on the base station can be mitigated. In addition, the 3-user MIMO interference channels with instantaneous relay can achieve 2M DoF when source and destination have M antennas, respectively. This method shows 33% improvement over the conventional method using interference alignment which obtains 3M/2 DoF.

A Model Management Framework for Supporting Departmental Collaborative Work (부서간 협동적 작업을 지원하는 모형관리 체계의 개발)

  • Huh, Soon-Young;Kim, Hyung-Min
    • Asia pacific journal of information systems
    • /
    • v.10 no.2
    • /
    • pp.51-69
    • /
    • 2000
  • Recently, as business problems become more complicated and require more precise quantitative results, large-scale model management systems are increasingly in demand for supporting the decision-making activities. In addition, as distributed computing over networks gains popularity, departmental computing systems are gradually adopted in an organization to facilitate collaboration of geographically dispersed multiple departments. In departmental collaborative model management systems, multiple departments share common models but approach them with different user-views depending on their departmental needs. Moreover, the shared models become evolved as their structures and the corresponding data sets change due to the dynamic nature of the operating environment and the inherent uncertainty associated with the problems. In such capacity, providing the multiple departmental users with synchronized and consistent views of the models is important to improve the overall productivity. In this paper, we propose a collaborative model management framework for coordinating model change and automatic user-view update in a departmental computing environment. To do so, we describes changes in the model and their effects occurred in departmental model management environments and identifies the constructs and processes for maintaining the consistency between a shared model and its departmental user-views. Especially, in this framework, generic model concept was adopted for accommodating diverse mathematical models in a uniform way in a modelbase and object-oriented database management systems(ODBMS) for combining the model management constructs and automatic user-view update mechanisms in a single formalism. A prototype object-oriented modeling environment was developed using an ODBMS called ObjectStore and $C^{++}$ programming language on Windows NT.

  • PDF

Performance analysis of Downlink Multi-user MIMO based on TM9 in Rel.10 (Rel.10 의 TM9 기반 다운링크 Multi-user MIMO 성능분석)

  • Song, Hua Yue;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • LTE-Advanced is the evolved version of LTE which is currently in progress at the 3GPP. At present, as the number of smart phone users is rapidly increasing, the demand for ever more capacity is driven largely by video usage and high quality data communication and so on, this let more researchers study about LTE-A all over the world. LTE-A aims to achieve improved service and communication quality over 3G system at the aspect of throughput, peak data rate, latency, and spectral efficiency. Among various features in LTE-A, the multi-user MIMO(MU-MIMO), in which the base station transmits several streams to multiple receivers, has expected to give better quality for system. In this paper, we investigate performances of various types of downlink receivers with fixed number of antennas. we first review the development process from LTE to LTE-A. Second we introduce TM9 which is adopted in Rel.10 for MU-MIMO system, including the MU-MIMO system model and the explanation on the algorithm used in system. We also have brief introduction about sub-blocking in turbo decoding, finally we compare the performance between the uncoded case and coded case which is using turbo encoding.

Optimal User Density and Power Allocation for Device-to-Device Communication Underlaying Cellular Networks

  • Yang, Yang;Liu, Ziyang;Min, Boao;Peng, Tao;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.483-503
    • /
    • 2015
  • This paper analyzes the optimal user density and power allocation for Device-to-Device (D2D) communication underlaying cellular networks on multiple bands with the target of maximizing the D2D transmission capacity. The entire network is modeled by Poisson point process (PPP) which based on stochastic geometry. Then in order to ensure the outage probabilities of both cellular and D2D communication, a sum capacity optimization problem for D2D system on multiple bands is proposed. Using convex optimization, the optimal D2D density is obtained in closed-form when the D2D transmission power is determined. Next the optimal D2D transmission power is obtained in closed-form when the D2D density is fixed. Based on the former two conclusions, an iterative algorithm for the optimal D2D density and power allocation on multiple bands is proposed. Finally, the simulation results not only demonstrate the D2D performance, density and power on each band are constrained by cellular communication as well as the interference of the entire system, but also verifies the superiority of the proposed algorithm over sorting-based and removal algorithms.

Optimal Life Cycle Cost Design of a Bridge (교량의 생애주기비용 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.115-122
    • /
    • 2010
  • The importance of the life cycle cost (LCC) analysis for bridges has been recognized over the last decade. However, it is difficult to predict LCC precisely since the costs occurring throughout the service life of the bridge depend on various parameters such as design, construction, maintenance, and environmental conditions. This paper presents a methodology for the optimal life cycle cost design of a bridge. Total LCC for the service life is calculated as the sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The optimization method is applied to design of a bridge structure with minimal cost, in which the objective function is set to LCC and constraints are formulated on the basis of Korean Bridge Design Code. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on damage probabilities to consider the uncertainty of load and resistance. Repair and rehabilitation cost is determined using load carrying capacity curves and user cost includes traffic operation costs and time delay costs. The optimal life cycle cost design of a bridge is performed and the effects of parameters are investigated.

Improved Power Allocation to Enhance the Capacity in OFDMA System for Proportional Resource Allocation (Proportional 자원할당을 위한 OFDMA 시스템에서 채널 용량을 증대시키기 위한 향상된 전력 할당 기법)

  • Var, Puthnith;Shrestha, Robin;Kim, JaeMoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.580-591
    • /
    • 2013
  • The Orthogonal Frequency Division Multiple Access (OFDMA) is considered as a novel modulation and multiple access technique for 4th generation wireless systems. In this paper, we formulate a base station's power allocation algorithm for each user to maximize the user's sum rate, subject to constraints on total power, bit error rate, and rate proportionality among the users for a better proportional rate adaptive (RA) resource allocation method for OFDMA based system. We propose a novel power allocation method based on the proportion of subcarrier allocation and the user's normalized proportionality constant. We adapt a greedy algorithm and waterfilling technique for allocating the subcarriers among the users. In an end-to-end simulation, we validate that the proposed technique has higher system capacity and lower CPU execution times, while maintaining the acceptable rate proportionality among users.

Small-cell based Cooperative Multi-Point Communications to Increase Macro-cell User Performance in Ultra-Dense Heterogeneous Networks (고밀도 이기종 네트워크에서 매크로셀 사용자 성능 향샹을 위한 스몰셀 기반 다중점 협력통신)

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2021
  • In ultra-dense heterogeneous networks, the amount of interference from small-cell base stations(SBS) to macro-cell user equipments (MUEs) increases significantly as the number of SBSs increases and it causes the MUEs to decrease the signal-to-interference and noise ratio(SINR) and system capacity. In this paper, we propose a small-cell based cooperative multi-point(CoMP) communication scheme that can guarantee the performance of MUEs even when the number of SBSs increases. In the proposed scheme, MUEs first find SBSs that give signal strength equal to or greater than a given SINR threshold and then they are served by different numbers of the selected SBSs using CoMP to improve the performance of MUEs. Simulation results show that the proposed small-cell based CoMP scheme outperforms other interference management or CoMP schemes in terms of the SINR and system capacity of MUEs.

Performance Analysis of an Intelligent Peripheral System in Advanced Intelligent Network (시뮬레이션을 통한 AIN IP 시스템의 호처리용량 분석)

  • Suh, Jae-Joon;Choi, Go-Bang;Yeo, Kun-Min;Jun, Chi-Hyuck
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.77-87
    • /
    • 1998
  • Intelligent Peripheral(IP) system is to provide specialized resource functions (SRF) such as playing announcement, collecting user information, and receiving messages in the Advanced Intelligent Network (AIN). We analyze the call processing capacity of an AIN IP system being developed in ETRI through an extensive simulation using SLAM II under a variety of AIN service scenarios. We consider televoting (VOT) and universal personal telecommunication (UPT) services which are to be provided at the fit implementation of the AIN in Korea. As the performance criteria to determine the call processing capacity, processor utilization, delay and call loss probability are considered. It turns out that the major processor called SAMP is the bottleneck processor, the service response delay dominates the delay performance, and the call loss probability becomes the primary criterion in determining the call processing capacity of the AIN IP system. It is also shown that the call processing capacity of the AIN IP system is determined by the utilization of the processor and the delay performance when the VOT ratio is below 70 percent but it is determined by the call loss probability due to the lack of service channels for providing the SRF operations.

  • PDF

Capacity Analysis of Centralized Cognitive Radio Networks for Best-effort Traffics

  • Lin, Mingming;Hong, Xuemin;Xiong, Jin;Xue, Ke;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2154-2172
    • /
    • 2013
  • A centralized cognitive radio (CR) network is proposed and its system capacity is studied. The CR network is designed with power control and multi-user scheduling schemes to support best-effort traffics under peak interference power constraints. We provide an analytical framework to quantify its system capacity, taking into account various key factors such as interference constraints, density of primary users, cell radius, the number of CR users, and propagations effects. Furthermore, closed-form formulas are derived for its capacities when only path loss is considered in the channel model. Semi-analytical expressions for the capacities are also given when more realistic channel models that include path loss, shadowing, and small-scale fading are used. The accuracy of the proposed analytical framework is validated by Monte Carlo simulations. Illustrated with a practical example, the provided analytical framework is shown to be useful for the strategic planning of centralized CR networks.