• Title/Summary/Keyword: ursolic\

Search Result 184, Processing Time 0.042 seconds

Inhibitory Effects of Forsythia velutina and its Chemical Constituents on LPS-induced Nitric Oxide Production in BV2 Microglial Cells

  • Kim, Na-Yeon;Ko, Min Sung;Lee, Chung Hyun;Lee, Taek Joo;Hwang, Kwang-Woo;Park, So-Young
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Neuroinflammation is known to be associated with brain injury in Alzheimer's disease (AD), and the inhibition of microglial activation, a key player in inflammatory response, is considerd as important target for AD. In this study, the ethanol extract of aerial parts of Forsythia velutina Nakai, a Korean native species, significantly inhibited nitric oxide (NO) production in LPS-stimulated BV2 microglial cells. Thus, the active principles in F. velutina aerial parts were isolated based on activity-guided isolation method. As a result, six compounds were isolated and their structures were elucidated based on NMR data and the comparison with the relevant references as arctigenin (1), matairesinol (2), rengyolone (3), ursolic acid (4), secoisolariciresinol (5), and arctiin (6). Among them, four compounds including arctigenin (1), matairesinol (2), secoisolariciresinol (5), and arctiin (6) significantly inhibited NO production in a dose-dependent manner. In particular, matairesinol (2) and secoisolariciresinol (5) reduced 60% of NO production compared to LPS-treated group. This inhibitory effects of matairesinol (2) and secoisolariciresinol (5) were accompanied with the reduced expression levels of iNOS and COX-2. These results suggest that the extract of F. velutina and its active compounds could be beneficial for neuroinflammatory diseases including AD.

UHPLC/TOFHRMS analysis and anti-inflammatory effect of leaf extracts from Zizyphus jujuba in LPS-stimulated RAW264.7 cells

  • Hyun Ji Eo;Sun-Young Lee;Gwang Hun Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.27-33
    • /
    • 2023
  • Zizyphus jujube is a plant in the buckthorn family (Rhamnaceae) that has been the subject of research into antibacterial, antifungal and anti-inflammatory properties of its fruit and seed. However, few studies have investigated its leaves. In this study, the anti-inflammatory activity of ZJL (an extract of Z. jujube leaf) was evaluated to verify its potential as an anti-inflammatory agent and SARS-CoV-2 medicine, using nitric oxide (NO) assay, RT-PCR, SDSPAGE, Western blotting, and UHPLC/TOFHRMS analysis. We found that ZJL suppresed pro-inflammatory mediators such as NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. ZJL acted by inhibiting NF-KB and MAPK signaling pathway activity. We also confirmed that ZJL contains a phenol compound and flavonoids with anti-inflammatory activity such as trehalose, maleate, epigallocatechin, hyperoside, catechin, 3-O-coumaroylquinic acid, rhoifolin, gossypin, kaempferol 3-neohesperidoside, rutin, myricitrin, guaiaverin, quercitrin, quercetin, ursolic acid, and pheophorbide a. These findings suggest that ZJL may have great potential for the development of anti-inflammatory drugs and vaccines via inhibition of NF-κB and MAPK signaling in LPS-induced RAW264.7 cells.

Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B

  • Chen, Zhen-Hua;Sun, Liang-Peng;Zhang, Wei;Shen, Qiang;Gao, Li-Xin;Li, Jia;Piao, Hu-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1505-1508
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is a key factor in negative regulation of the insulin pathway, and is a promising target for the treatment of type-II diabetes, obesity and cancer. Herein, compound ($\mathbf{4}$) was first observed to have moderate inhibitory activity against PTP1B with an $IC_{50}$ value of $13.72{\pm}1.53{\mu}M$. To obtain more potent PTP1B inhibitors, we synthesized a series of chalcone derivatives using compound ($\mathbf{4}$) as the lead compound. Compound $\mathbf{4l}$ ($IC_{50}=3.12{\pm}0.18{\mu}M$) was 4.4-fold more potent than the lead compound $\mathbf{4}$ ($IC_{50}=13.72{\pm}1.53{\mu}M$), and more potent than the positive control, ursolic acid ($IC_{50}=3.40{\pm}0.21{\mu}M$). These results may help to provide suitable drug-like lead compounds for the design of inhibitors of PTP1B as well as other PTPs.

Effects of Oleanolic Acid and its Derivatives on the Differentiation of MC3T3-E1 Osteoblastic Cell (Oleanolic acid 및 그 유도체가 MC3T3-E1 조골세포주의 분화에 미치는 효과)

  • Kim, Se-Won;Lee, Chang-Ho;Jung, Hee-Kung;Jo, Sung-Sin;Lee, Hong-Ki;Park, Yong-Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.491-500
    • /
    • 2011
  • Ursolic acid, triterpenoid compound has been shown to stimulate osteoblast differentiation and enhance bone formation. In the present study, we examined the effects of similar triterpenoid compounds, oleanolic acid (OA) and its derivatives, such as oleanolic acid acetate (OAA) and oleanolic acetate methyl ester (OAM) on the bone formation in MC3T3-E1 osteoblast cells. We determined cellular proliferation, alkaline phosphatase (ALP) activity, mineralization, and expression of osteoblast specific genes and mitogen activated protein kinase phosphorylation. Treatment of $0.1-10{\mu}m$ OA, OAA, and OAM increased cellular proliferation, but not significantly increased as compared with dimethyl sulfoxide (DMSO). OA, OAA, and OAM at 5uM concentration enhanced ALP expression, mineralization, and osteocalcin (OCN) mRNA level. In conclusion, OA and its derivatives stimulated the osteoblast differentiation by increasing ALP, mineralization, and OCN mRNA expression. However, there were no significantly difference on osteoblast differentiation among treatment of OA, OAA, and OAM.

Study on Sensory and Mechanical Characteristics of White Bread Containing Different Levels of Korean and Chinese Sansa (Crataegus pinatifida Bunge) Powder (한국산과 중국산 산사가루의 첨가량을 달리한 식빵의 품질특성연구)

  • Song, Tae-Hee;Choi, Hee-Sook;Kim, Yong-Sun;Woo, In-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.4
    • /
    • pp.391-399
    • /
    • 2012
  • In this study, the sensory and mechanical characteristics of white bread containing different levels of Korean and Chinese sansa powder were evaluated. Korean sansa was smaller and more reddish than that of Chinese sansa. Sansa powder contained ursolic acid, citric acids, and flavonoids, which have antioxidative effects. Contents of total flavonoids in Korean and Chinese sansa powder were $217.67{\pm}7.64$ mg/100 g and $127.67{\pm}7.85$ mg/100 g, respectively. The mechanical and sensory characteristics of bread added with different levels (0, 2, 4, and 6%) of Korean and Chinese sansa powder were evaluated. Lightness of crust and crumb of bread containing Korean sansa powder decreased as the level of Korean sansa powder increased, whereas they increased as the level of Chinese sansa powder increased. Mechanical texture parameters such as hardness and gumminess increased as the level of Korean and Chinese of sansa powder increased. In a sensory evaluation, control, bread containing 2 or 4% Korean sansa powder, and bread containing 2% Chinese sansa powder showed higher overall acceptability than the others. In conclusion, these results indicate that the recommended substitution level for sansa powder in bread is 2 or 4% Korean sansa powder and 2% Chinese sansa powder.

Constituents of the seeds of Cornus officinalis with Inhibitory Activity on the Formation of Advanced Glycation End Products (AGEs) (산수유 씨의 최종당화산물 생성저해활성 성분)

  • Lee, Ga-Young;Jang, Dae-Sik;Lee, Yun-Mi;Kim, Young-Sook;Kim, Jin-Sook
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.316-320
    • /
    • 2008
  • Ten compounds, (+)-pinoresinol (1), (-)-balanophonin (2), gallicin (3), vanillin (4), 4-hydroxybenzaldehyde (5), coniferaldehyde (6), betulinic acid (7), ursolic acid (8), 5-hydroxymethyl furfural (9), and malic acid (10), were isolated from a EtOAc-soluble fraction of the seeds of Cornus officinalis. The structures of these compounds were elucidated by spectroscopic methods as well as by comparison with reported values. Compounds 1, 2, and 4-7 were isolated from this species for the first time. All the isolates (1-10) were subjected to an in vitro bioassay to evaluate their inhibitory activity against advanced glycation end products (AGEs) formation. Among these, compounds 2 and 3 showed the significant inhibitory activity on AGEs formation with $IC_{50}$ values of 27.81 and 18.04${\mu}M$, respectively.

Evaluation of analgesic and antiinflammatory activity of Ophiorrhiza nicobarica, an ethnomedicine from Nicobar Islands, India

  • Chattopadhyay, Debprasad;Das, Sonali;Mandal, Asit Baran;Arunachalam, G;Bhattacharya, SK
    • Advances in Traditional Medicine
    • /
    • v.7 no.4
    • /
    • pp.395-408
    • /
    • 2007
  • This study reports the analgesic, anti-inflammatory and membrane-stabilizing property of alcoholic extract of Ophiorrhiza nicobarica (ON), a wild herb, used as an anti-infective ethnomedicine of Nicobarese and Shompen tribes of Great Nicobar Island, India. We for the first time investigated the analgesic and antiinflammatory potential of this herb in acute, subacute and chronic model of inflammation in Swiss albino mice and Wistar albino rats, along with sheep RBC-induced sensitivity and membrane stabilization. The acetic acid induced writhing, tail flick and tail immersion tests are used as a model for evaluating analgesic activity; while the carrageenin-induced paw oedema was used as the model for acute inflammation, dextran-induced oedema as sub-acute and cotton-pellateinduced granuloma as chronic inflammatory model. The probable mode by which ON mediate its effect on inflammatory conditions was studied on sheep RBC-induced sensitivity and membrane stabilization. The in vitro results revealed that the ON extract possesses significant (P < 0.05) dose dependent analgesic and antiinflammatory activity at 200 and 300 mg/kg and its fractions at 50 mg/kg, p.o. respectively, compared to the control groups. However, the extract failed to exhibit membrane-stabilizing property as it unable to reduce the level of haemolysis of RBC exposed to hypotonic solution. The acute toxicity studies of ON extract in rats and mice revealed that the extract was nontoxic even up to 3.0 g/kg body weight of the animals, with a high safety profile. We have isolated ursolic acid, ${\beta}$-sitosterol and harmaline respectively, from the bioactive part of the extract. The results indicated that the O. nicobarica is indeed beneficial in primary health care, and suggest that its anti-inflammatory activity may not be related to membrane-stabilization.

Anti-wrinkle Effect of Safflower (Carthamus tinctorius) Seed Extract (I) (홍화씨추출물의 피부 주름개선 효과(I))

  • 윤경섭;김미진;김자영;최상원;홍진태
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Anti-wrinkle Effect of safflower (Carthamus tinctorius L.) seed extract (CTSE) was evaluated by determination of the anti-oxidation, collagen synthesis and elastase inhibition in normal human fibroblast. CTSE showed anti-oxidation and collagen synthesis ability as much as or greater than other phytoestrogenic compounds such as genistein or resveratrol. Consistent with collagen synthesis promotion, CTSE also showed inhibitory effect on elastase activity. In the human skin irritation test, 0.2% CTSE did not show any adverse effect. These results demonstrate that CTSE can be useful as an anti-wrinkle cosmetic ingredient.

Chemical Constituents of Nauclea vanderguchtii

  • Nkouayeb, Brice Maxime Nangmou;Azebaze, Anatole Guy Blaise;Tabekoueng, Georges Bellier;Tsopgni, Willifred Dongmo Tekapi;Lenta, Bruno Ndjakou;Frese, Marcel;Sewald, Norbert;Vardamides, Juliette Catherine
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.144-150
    • /
    • 2020
  • Phytochemical investigation of leaves, barks and roots of Nauclea vanderguchtii led to the isolation of sixteen compounds, which includes one citric acid derivative (2), one alkaloid (16), one peptide derivative (3), and twelve triterpenes (1, 4 - 13). These compounds were identified as rotundanonic acid (1), 2-hydroxy-1,2,3-propanetricarboxylic acid 2-methyl ester (2), asperphenamate (3), lupeol (4), stigmasterol (5), betulin (6), betulenic acid (7), stigmasterol 3-O-β-D-glucopyranoside (8), quinovic acid 3β-O-α-L-rhamnoside (9), α-amyrin (10), 3-oxoquinovic acid (11), ursolic acid (12), hederagenin (13), rotundic acid (14), clethric acid (15), and naucleficine (16) by the analysis of their NMR spectroscopic data including 2D NMR spectra and by comparison of their spectroscopic data reported in the literature. Compounds 1 and 3 were isolated for the first time in the genus Nauclea, and compound 2 was isolated for the first time from the Rubiaceae family. Complete NMR assignations for 1 have been published for the first time.

Isolation of the Constituents from Clinopodium chinense var. shibetchense and Inhibition Activity on Cancer Cell Growth and Nitric Oxide Production (산층층이꽃 추출물로부터 성분 분리 및 암세포성장 및 NO 생성 억제활성)

  • Kim, Donghwa;Lee, Sang Kook;Park, Kyoung-Sik;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • This study was performed to find anti-inflammatory or antitumor compounds from the polar fraction obtained from the extract of Clinopodium chinense var. shibetchense (H. Lev) Koidz (Labiatae). Chromatography of the BuOH fraction yielded two flavonoid glycosides (compounds 1 and 2) and two saponins (compounds 3 and 4). On the basis of spectroscopic data, compounds 1 and 2 were identified to be ponciretin 7-O-α-L-rhamnopyranosyl-(1→6)-α-D-glucopyranoside (neoponcirin) and naringenin 7-O-α-L-rhamnopyranosyl-(1→6)-α-D-glucopyranoside (isonaringin). Compounds 3 and 4 were identified to be 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-fucopyranosyl}-saikogenin F (buddlejasaponin IV) and 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-fucopyranosyl}-21β-hydroxysaikogenin F (clinoposaponin XV). In addition, ursolic acid (5) was isolated and identified from the CHCl3 fraction. Inducible nitric oxide synthase (iNOS) assay and sulforhodamine B (SRB) assay were performed to lead a potential anti-inflammatory or anti-tumor compounds from C. chinense var. shibetchense. Of the four compounds (1 - 4), compound 3 considerably inhibited cancer cell growth and NO production (IC50s, 5.59 μM in iNOS assay and 6.62 - 14.88 μM in SRB assay).