• Title/Summary/Keyword: urinary metabolites

Search Result 146, Processing Time 0.04 seconds

URINARY PAH METABOLITES INFLUENCED BY GENETIC POLYMORPHISMS OF GSTM1 IN HOSPITAL INCINERATING WORKERS

  • Lee, Kyoung-Ho;Cho, Soo-Hun;Park, Inmi;Deahee Kang
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.192-192
    • /
    • 2002
  • Hospital waste incinerating workers are exposed to various pyrolysis products including polycyclic aromatic hydrocarbons (PARs). We evaluated their exposure by assessing urinary 1-hydroxypyrene glucuronide (1-OHPG), as internal dose of PAH exposure. The potential effect of genetic polymorphisms of GSTM1/T1 involved in PAH metabolisms was also investigated.(omitted)

  • PDF

Urinary PAH Metabolites as Biomarkers of Environmental PAHs Exposure (환경성 PAHs 노출과 생체지표 연구)

  • Lee, Kyoung-Ho;Li, Zhung-Min;Cho, Soo-Hun;Kwon, Ho-Jang;Kang, Dae-Hee
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • The aim of the study was to see if there is any differences in urinary 1-hydroxypyrene glucuronide (1-OHPG) and 2-naphthol levels in children ($8{\sim}14$ years old) and their mothers ($30{\sim}46$ years old) living three cities in South Korea (Seoul, Incheon and Pohang) and three in China (Changchun, Datong and Kunming), where the levels of air pollution varies. The factors related with urinary biomarkers levels were also evaluated. The study subjects consisted of 118 Korean (60 children and 58 their mothers) and 120 Chinese (60 children and 60 their mothers). Urinary 1-OHPG was measured by synchronous fluorescence spectroscopy after immuno-affinity purification using monoclonal antibody 8E11 and urinary 2-naphthol concentrations were determined by HPLC with fluorescence detector. Information on recent consumption of diet containing high PAHs, environmental tobacco smoke (ETS), type of cooking and heating fuels, and other life-style characteristics were collected by self-administered questionnaire. The arithmetic mean of urinary 1-OHPG levels (n = 120, $mean{\pm}SD$, $6.77{\pm}7.96{\mu}mol/mol$ creatinine) in Chinese were 10 fold higher than those in Korean (n = 118, $0.62{\pm}0.61{\mu}mol/mol$ creatinine) (P < 0.01). Urinary 2-naphthol levels in Chinese (n = 119, $59.50{\pm}82.29{\mu}g/g$ creatinine) were significantly higher than those in Korean (n = 117, $25.09{\pm}46.56{\mu}g/g$ creatinine) (P < 0.01). Urinary 1-OHPG and 2-naphthol levels were significantly higher in children living the polluted cities in China (Datong and Chanchun, respectively). Multiple linear regression analysis indicated that living in factory area (vs. residential area) and use of coal stove as heating fuel were significant predictors for urinary 1-OHPG (overall model $R^2$= 0.46, n = 204). And ETS was predictor for urinary 2-naphthol levels in Korean ($R^2$ = 0.36, n = 46). These results indicated that urinary 1-OHPG and 2-naphthol levels were related with different ambient particulate air pollution, type of heating fuels and ETS.

Health Effect Assessment on Cleanup Workers of an Oil Spill in Yeosu (여수 유류유출사고 방제작업자의 건강영향평가)

  • Kim, Geunbae;Kang, Tack Shin;Yoon, Mira;Jo, Hyejung;Joo, Youngkyung;Yu, Seung Do;Lee, Bo Eun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.385-395
    • /
    • 2016
  • Objectives: The aim of this study was to assess exposure to VOCs and PAHs and the health effects on volunteers who participated in an oil spill cleanup in Yeosu. Methods: Atmospheric VOCs were evaluated in the vicinity of the accident site and questionnaire surveys were conducted to identify personal characteristics and acute health symptoms of clean-up workers seven days after the accident. The levels of metabolites of VOCs (t,t-MA, HA, PGA, MA, MHA) and PAHs (2-NAP, 1-OHP, 2-HF, 1-HPH), oxidative stress markers (TABARS, 8-OHdG) in the urine of workers were analyzed. Their correlation was determined by multiple regression analysis with SAS ver. 9.4. Results: Although the concentration of atmospheric VOCs in the residential areas were low at the time of survey, the levels of VOCs and PAHs metabolites in clean-up workers were higher than those in the control group after clean-up activities. The levels of urinary VOC and PAH metabolites were significantly increased after clean-up compared to those measured before participation. The thiobarbituric acid reactive substance (TBARS) concentrations were also increased and showed significant correlations with those of metabolites of benzene. Conclusion: This study shows that oil spill clean-up activities affect exposure to VOCs and PAHs and the health of clean-up workers. The results suggest the need for check-ups of participants in oil spill cleaning work.

Determination of diclofenac and its metabolites in human urine by GC-MS (GC-MS를 이용한 소변 중 Diclofenac 및 대사체 분석)

  • Jeong, Jee-Hye;Huh, Hun;Lee, Won Woong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.510-517
    • /
    • 2008
  • This study has been described the metabolism and excretion in a healthy male urine collected for 26hrs after oral administration of diclofenac. To detect conjugated metabolites of diclofenac, urine sample was acid-hydrolyzed under the conditions of 6M-HCl at over $110^{\circ}C$ for 1hr. During the acidic hydrolysis process, diclofenac and its metabolites were converted into their corresponding lactam-ring through dehydration reaction. As results of chemical conversion by means of hydrolysis, the structures of diclofenac and its metabolites were also changed acidic to basic forms. However, lactam-ring was degraded by hydroxyl ion at basic condition. Thus, the extraction rate of dehydrated diclofenac and its metabolites was not favored at basic condition. For the determination of trace amounts of diclofenac and its metabolites in urine, trimethylsilylation (TMS) with MSTFA was applied and followed by analysis with gas chromatograph-mass spectrometer. In this study, four metabolites that are formed by the hydroxylation of parent drug were mainly detected. Each metabolite was tentatively identified by both interpretation of mass spectra and comparison with previously reported results. In addition, time profile of urinary excretion rate for parent drugs and metabolites was studied. Finally, the metabolic pathway of diclofenac was suggested on the basis of the elucidation of its metabolites and excretion profiles.

Chemopreventive Effects of Korean Red Ginseng (Panax ginseng Meyer) on Exposure to Polycyclic Aromatic Hydrocarbons

  • Lee, Ho-Sun;Park, Jong-Yun;Yang, Mi-Hi
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.339-343
    • /
    • 2011
  • Polycyclic aromatic hydrocarbons (PAHs) are well known environmental carcinogens. PAH metabolites, especially BaP-7,8- dihydrodiol, 9,10 epoxide, initiate carcinogenesis via high specificity binding to DNA to form DNA adducts. The Korean red ginseng (KRG) from Panax ginseng has been suggested to protect against damages due to PAH exposure but the mechanism is unknown. Therefore, we investigated effects of KRG on PAH exposure using toxicokinetic methods and changes of PAH-induced oxidative damage during a 2 week-clinical trial (n=21 healthy young female, $23.71{\pm}2.43$ years). To analyze antioxidative effects of KRG, we measured changes in the levels of urinary malondialdehyde (MDA) before and after KRG treatment. We observed a significant positive association between levels of urinary MDA and 1-hydroxypyrene, a biomarker of PAH exposures (slope=1.47, p=0.03) and confirmed oxidative stress induced by PAH exposures. A reverse significant correlation between KRG treatment and level of urinary MDA was observed (p=0.03). In summary, results of our clinical trial study suggest that KRG plays a significant role in antioxidative as well as toxicokinetic pathways against PAHs exposure.

Relevance of Gender, Age and the Body Mass Index to Changes in Urinary Creatinine Concentration in Korean Adults (한국 성인의 요중 크레아티닌 농도 변화에 대한 성, 연령 그리고 체질량지수(BMI)의 관련성 연구)

  • Lee, Jin-Heon;Ahn, Ryoung-Me
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.215-221
    • /
    • 2010
  • The purpose of this study was to investigate the relevance of gender, age, and BMI (Body Mass Index) to changes in the urinary creatinine concentration in Korean adults. We recruited and surveyed 2,156 persons $\geq$20 years of age from 98 districts across the country, and collected urine samples for analyzing the creatinine concentration. Participants were 41.6% men and 58.4% women. In terms of age, the percentage of the population in their 20's and $\geq$60 years of age was relatively similar, with 13.6% and 17.8%, respectively, while the percentages in their 30's, 40's and 50's were also relatively similar, with 22.0%, 24.0%, and 22.6%, respectively. The proportion of participants in their 20's and 30's who were underweight (according to the BMI) was 25% and 19.2%, respectively, but only 6.2~6.4% of those $\geq$40 years of age were underweight. This showed that the underweight proportion in elder generations was less than that in younger generations. Meanwhile, the proportion who were overweight was 13.7%, 18.8%, 28.6%, 27.9%, 32.0% when the participants were in their 20's, 30's, 40's, 50's and $\geq$60 years of age, respectively (p<0.000). This showed that the overweight proportion increased along with increasing age. The overall urinary creatinine concentration was 10 mg/dl (arithmetic mean: AM), and 92.2 mg/dl (geometric mean: GM). The urinary creatinine concentration in men (132.6 mg/dl, AM) was significantly higher than that in women (93.3 mg/dl, AM (p<0.000)). Showing a similar trend in men and women, urinary creatinine concentrations were highest when the participants were in their 20's (135.6 mg/dl, AM), and tended to decrease with increasing age. Urinary creatinine concentrations in overweight and obese subjects (AM of 117.9 mg/dl and 118.0 mg/dl, respectively) were significantly higher than in other groups, and this trend was similar in men and women. In conclusion, we found that urinary concentrations were significantly affected by gender, age, and BMI, and that care should therefore be exercised when correcting urinary metabolites according to the urinary creatinine concentration.

Determination of ibuprofen and its metabolites in human urine by GC-MS (GC-MS에 의한 소변 중 Ibuprofen의 대사체 규명 및 대사 연구)

  • Yu, Dae-Hyung;Cho, Jung-Hum;Hong, Jong-Ki
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.179-186
    • /
    • 2010
  • The oxidative metabolism of ibuprofen in healthy male urine collected at 3, 6, 9, 12 and 15 h after oral administration of ibuprofen was studied by GC/MS assay. To detect conjugated metabolites of ibuprofen, urine sample was acid-hydrolyzed with 6 M HCl at $100^{\circ}C$ for 30 min. To effectively extract ibuprofen and its metabolites, liquid-liquid extraction (LLE) was conducted at pH 3, 5, and 7, respectively. As a result, LLE at pH 3 was shown to be the best extraction condition. For the determination of trace amounts of ibuprofen and its metabolites in extract, trimethylsilylation (TMS) with BSTFA was applied and followed by GC/MS analysis. In this study, main 5 metabolites including parent drug were detected and these metabolites were assigned as three hydroxylated forms and one carboxylated form. Each metabolite was tentatively identified by both interpretation of mass spectrum and comparison with previously reported results. In addition, time profile of urinary excretion rate for parent drugs and metabolites was studied. Finally, the metabolic pathways of ibuprofen were suggested on the basis of the structural elucidation of its metabolites and excretion profiles.