• Title/Summary/Keyword: urea resin

Search Result 166, Processing Time 0.03 seconds

Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives

  • LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.136-153
    • /
    • 2020
  • In this paper, the influence of initial formaldehyde/urea (F/U) molar ratios on the performance of low molar ratio (1.0) urea-formaldehyde (UF) resin adhesives has been investigated. Two initial F/U molar ratios, i.e., the first and second initial molar ratios were used for the alkaline addition reaction. Three levels of the first initial F/U molar ratios (2.0, 3.0, and 4.0) and two levels of the second initial molar ratios (2.0 and 1.7) were employed to prepare a total of six UF resins with an identical final molar ratio (1.0). The basis properties, functional groups, molecular weight, crystallinity, and thermal curing properties of the UF resins were characterized in detail. Higher levels (3.0 and 4.0) of the first initial F/U molar ratio provided the UF resins with better properties (non-volatile solids content, viscosity, gelation time, pH, and specific gravity) than those of the resins prepared with the conventional level F/U molar ratio of 2.0. Statistical analysis suggested that combining the first and second initial molar ratio of 4.0 with 1.7 would result in UF resins with greater adhesion strength and lower formaldehyde emission than those of the resins prepared with other molar ratios. The results showed that higher levels of the first initial molar ratio resulted in a more branched structure, as indicated by GPC, FTIR, DSC, XRD, and greater adhesion strength than those of the other UF resins with an identical final molar ratio of 1.0.

Effect of Green Tea Content on Static Bending Strength Performance of Hybrid Boards Composed of Green Tea and Wood Fibers (녹차-목재섬유복합보드의 정적 휨 강도성능에 미치는 녹차배합비율의 영향)

  • Park, Han-Min;Kang, Dong-Hyun;Lim, Na-Rea;Lee, Soo-Kyeong;Jung, Kang-Won;Kim, Jong-Chul;Cho, Kyeong-Hwan
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on the static bending strength performances of these green tea and wood fibers composite boards were investigated. Static bending strengths of hybrid composite boards were lower than those of control boards and decreased with the increase of green tea content. Also, the strength performances appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.08~1.53 times higher in bending modulus of elasticity (MOE) and 1.19~1.82 higher in modulus of rupture (MOR) than that manufactured from $E_0$ grade. And, the differences of MOE and MOR between hybrid composite boards manufactured from $E_0$ grade and $E_0$ grade urea resin adhesive increased with the increase of green tea content. In the case of hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, the MOR was within 0.94~1.03 times the commercial medium density fiberboard. Thus, it was thought that eco-friendly hybrid composite boards with various functionalities and strong strength performances could be manufactured from green tea and wood fibers.

Physical and Mechanical Properties of Three-layer Particleboards Bonded With UF and UMF Adhesives

  • Iswanto, Apri Heri;Simarmata, Janrahman;Fatriasari, Widya;Azhar, Irawati;Sucipto, Tito;Hartono, Rudi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.787-796
    • /
    • 2017
  • A low dimensional stability and poor bending strength properties were main problems in particleboard manufacturing. The objective of this research was to evaluate the effect of mixed wood species and urea-formaldehyde (UF) or urea-melamine-formaldehyde (UMF) resins on the physical and mechanical properties of three-layer particleboards. The ratio of face/core/back layer was 1 : 2 : 1. The resin content of 12% for both UF resins and UMF resins (UF/MF = 70/30% w/w) was used. The results of this study showed that the utilization of S.mahagony shaving using both UF and UMF resins caused a decrease in the thickness swelling and water absorption of the boards. Thickness swellings of particleboard made of Sengon/Sengon/Sengon (SSS), Mahogany/Mahogany/Mahogany (MMM), Sengon/Mahogany/Sengon (SMS), and Mahogany/Sengon/Mahogany (MSM) were in the range of 23%, 12~16%, 14~16%, and 13~21%, respectively. The board bonded with UMF resin demonstrated better dimensional stability than that bonded with UF resin alone. Modulus of elasticity (MOE) and modulus of rupture (MOR) of particleboards made of S. mahagony shaving in the surface layer in both MMM and MSM boards were better than those of the SSS and SMS. MOE of MMM and MSM board was in the ranges of 24,000 to $26,000kg.cm^{-2}$ and 18,000 to $21,000kg.cm^{-2}$ respectively. Meanwhile, the MOR of board was in the ranges of 200 to $240kg.cm^{-2}$ and 190 to $228kg.cm^{-2}$, respectively.

The Formaldehyde/VOCs Emission of Particleboard with Cross-linked Vinyl Resin (변성 비닐계 접착제를 이용한 파티클보드의 포름알데히드/VOCs 방산특성)

  • Kim, Ki-Wook;Lee, Se Na;Baek, Bong-San;Lee, Byong-Ho;Kim, Hyun-Joong;Choi, Younmee;Jang, Seong Wook
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • This study was used particleboard with urea-formaldehyde resin and cross linking vinyl resin. Manufactured particleboard had high cross linking vinyl resin content that internal bonding strength was low value but flexural strength was increased. For emission test of particleboard using VOC Analyzer, it was confirmed that more cross linking vinyl resin had reduced 4 volatile organic compounds (Toluene, Ethylbenzen, Xylene, Styrene) but also TVOC (Total VOC), 5 VOCs (Benzene, Toluene, Ethylbenzen, Xylene, Styrene) and formaldehyde emissions from manufactured particleboard were also lower emission factor than particleboard with only urea formaldehyde resin.

  • PDF

Change in Chemical Compositions of Leachate and Medium Density Fiberboard from a Laboratory-scale Simulated Landfill

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.231-240
    • /
    • 2016
  • The change in chemical compositions of leachate and medium density fiberboard (MDF) from a laboratory-scale simulated landfill which constructed in a plastic container containing alternating layers of soil and MDF was investigated to evaluate decomposing of MDF in soil. Four treatments were conducted: 1) MDF in soil, 2) MDF only, 3) cured UF resin in soil, and 4) soil only. Molecular weight (MW) distribution of compounds in leachate from soil only treatment did not change over time. In UF resin in soil treatment, the MW distribution shifted to a lower MW distribution over time, while the peak shifted to the left indicated changing to higher MW distribution in leachate from treatment 1 and 2 contained MDF. Higher percent nitrogen in leachate was observed in MDF containing treatments due to the UF resin in the MDF. The percent carbon slightly increased in MDF only while that greatly decreased in MDF in soil treatment maybe due to bacterial activity. The percent of extractable materials from the MDF decreased greatly on day 35 compare to day 0, and subsequently did not change much on day 77. In contrast, percent holocellulose and lignin did not change much over time. No structural change of the wood fiber in MDF occurs during the study. Water-soluble materials from MDF in soil contributed the change in chemical composition of leachate.

Experimental Studies on the Improving Surface Hardness of Dental Stone (치과용(齒科用) 경석고(硬石膏) 의 표면경도(表面硬度) 강화(强化)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.23-27
    • /
    • 1969
  • The purpose of this studies is to determine the surface hardness of dental stone and to investigate the methods which increase the surface hardness of dental stone using the dissolved solution of various synthetic resin, the obtained results of hardness value calculated Rockwell Hardness Number by means of Rockwell Hardness Tester. 1) In this experiment, 10% polystyrene dissolved in 100cc amylacetate is excellent solution which provides the surface hardness of dental stone after setting of specimen, and there is no effective way that stone specimen is immersed into polystyrene in amylacetate, polystyrene in benzene and polystyrene in butylacetate above 1 hour. 2) When the stone specimen is immersed into acrylic resin in benzene and melamin resin in amylacetate at least 1 hour to 3 hours, the hardening effect of stone surface is valuable. 3) The stone specimen immersing into urea resin in butylacetate, the surface hardness of the stone specimen decreased within 1 hour, but increased after 3 houre. 4) For the separating medium, the easyfoil is superior to the olive oil in the aspect of improving the hardening effect of the immersed specimen.

  • PDF

Purification of the Recombinant Helicobacter pyrori Urease by Affinity Chromatography (Affinity Chromatography를 이용한 재조합 Helicobacter pylori urease의 분리 정제)

  • 이주연;이만형
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2003
  • Helicobacter pylori is the etiologic agent of human gastritis and peptic ulceration and produces urease as the major protein component on its surface. H. pylori urease is known to serve as a major virulence factor and a potent immunogen. Recombinant H. pylori urease expressed in E. coli was purified by simple purification procedures utilizing (CNBr-activated Sepharose-anti-urease IgG immunoaffinity chromatography or epoxy- activated Sepharose-urea affinity chromatography. Urease was apparently bound so tightly to the anti-urease IgG resin that it could not be eluted at various elution conditions except at certain extreme pH 1, including 100 mM carbonate (pH 10.5) buffer solution, which was shown to elute slightly inactivated but relatively pure enzyme. Urease eluted from the epoxy-activated Sepharose-urea affinity column showed higher activity, but the smaller UreA subunit of the enzyme appeared as a Fainter band of diminished intensity when subjected to SDS-polyamide gel electrophoresis.

Long Term Formaldehyde Emission Trend of Wood Panels Manufactured by F/U Molar Ratios in Urea Resin Adhesive (요소수지의 F/U 몰비별로 제조된 목질패널의 포름알데히드 장기 방출 경향)

  • Park, Heon
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was carried out to measure formaldehyde emission with the passing of two years from plywood, sliver-board and strand-board bonded with urea resins which were made of 6 f/U molar ratios. The urea resins were manufactured by six kinds of formaldehyde/urea molar ratio of 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. 1. The plywood with molar ratio of 1.0 satisfied the KS F3101 $F_2$ directly after manufacture. The plywood with molar ratio of 1.2 satisfied m 3 days. The plywood with molar ratio of 1.4 satisfied the $F_3$ in 3 days and the $F_2$ in 600 days. And the plywood with molar ratio of 1.8 and 2.0 satisfied the $F_3$ in 365 days, but didn't satisfy the $F_2$ in 730 days. 2. Sliver-board with molar ratio of 1.0 and 1.2 satisfied the KS F3104 $E_2$ right after manufacture. Sliver-board with molar ratio of 1.4 and 1.6 satisfied in 150 and 360 days, respectively. Sliver-board with molar ratio of 1.8 and 2.0 satisfied in 730 days. 3. Strand-board with molar ratio of 1.0 and 1.2 satisfied the KS F3104$ E_2$ directly after manufacture. Strand-board with molar ratio of 1.4 and 1.6 satisfied in 150 days. But Strand-board with molar ratio of 1.8 and 2.0 didn't satisfied in 730 days.

  • PDF

Effects of Reaction pH and Hardener Type on Reactivity, Properties, and Performance of Urea-Formaldehyde (UF) Resin

  • Park, Byung-Dae;Kim, Yoon Soo;So, Won Tek;Lim, Kie Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.1-11
    • /
    • 2002
  • This study was conducted to investigate the effects of reaction pH conditions and hardener types on the reactivity, chemical structure and adhesion performance of UF resins. Three different reaction pH conditions, such as traditional alkaline-acid (7.5 → 4.5), weak acid (4.5), and strong acid (1.0), were used to synthesize UF resins which were cured by adding three different hardeners (ammonium chloride, ammonium citrate, and zinc nitrate) to measure adhesion strength. Fourier transform infrared (FT-IR) and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopies were employed to study chemical structure of the resin prepared under three different reaction pH conditions. Adhesion strength of the resins cured with three different hardeners was determined with lap shear specimens in tension. The gel time of UF resins decreased with an increasing in the amount of both ammonium chloride and ammonium citrate added in the resins. However, the gel time increased for zinc nitrate. Both FT-IR and 13C-NMR spectroscopies showed that the strong reaction pH condition produce uronic structures in UF resin, while both alkaline-acid and weak acid conditions produce quite similar chemical species in the resins. The maximum adhesion strength was occurred with the resin prepared under strong acid pH condition. However, this study indicated that the weak acid reaction condition provide a balance between increasing resin reactivity and improving adhesion strength of UF resin. The measurement of formaldehyde emission from the panels bonded with the UF resins prepared is planned for future work.

A Study on the Thermal Performance change due to amount of Carbon Fiber in Poly-Urea Waterproofing Material (폴리우레아 방수재의 탄소섬유함량에 따른 내열성능 변화추이 연구)

  • Park, Wan-Goo;Park, Jin-Sang;Choi, Su-Young;Kim, Dong-Bum;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.126-127
    • /
    • 2017
  • This study investigates the effect of improving the heat resistance performance when carbon fiber is mixed in the polyurea coating material. A tensile strength test method was carried out with the carbon fiber mixed polyurea specimens at an interval of 7, 14, and 21 days after heat treatment at 140±2℃. The test results showed that there was a significant decrease in the tensile strength performance. While the elongation and tensile performance decreased greatly, it was confirmed nevertheless the overall performance was maintained. This study proposes that mixing carbon fiber to the polyurea resin can effectively secure long-term heat resistance, thereby solving the problem of deterioration of physical properties caused by exposure to ultraviolet rays.

  • PDF