Browse > Article
http://dx.doi.org/10.5658/WOOD.2020.48.2.136

Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives  

LUBIS, Muhammad Adly Rahandi (Research Center for Biomaterials, Indonesian Institute of Sciences)
PARK, Byung-Dae (Department of Wood and Paper Science, Kyungpook National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.48, no.2, 2020 , pp. 136-153 More about this Journal
Abstract
In this paper, the influence of initial formaldehyde/urea (F/U) molar ratios on the performance of low molar ratio (1.0) urea-formaldehyde (UF) resin adhesives has been investigated. Two initial F/U molar ratios, i.e., the first and second initial molar ratios were used for the alkaline addition reaction. Three levels of the first initial F/U molar ratios (2.0, 3.0, and 4.0) and two levels of the second initial molar ratios (2.0 and 1.7) were employed to prepare a total of six UF resins with an identical final molar ratio (1.0). The basis properties, functional groups, molecular weight, crystallinity, and thermal curing properties of the UF resins were characterized in detail. Higher levels (3.0 and 4.0) of the first initial F/U molar ratio provided the UF resins with better properties (non-volatile solids content, viscosity, gelation time, pH, and specific gravity) than those of the resins prepared with the conventional level F/U molar ratio of 2.0. Statistical analysis suggested that combining the first and second initial molar ratio of 4.0 with 1.7 would result in UF resins with greater adhesion strength and lower formaldehyde emission than those of the resins prepared with other molar ratios. The results showed that higher levels of the first initial molar ratio resulted in a more branched structure, as indicated by GPC, FTIR, DSC, XRD, and greater adhesion strength than those of the other UF resins with an identical final molar ratio of 1.0.
Keywords
initial molar ratio; synthesis method; adhesion; formaldehyde emission; plywood;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Bandara, N., Esparza, Y., Wu, J. 2017. Exfoliating nanomaterials in canola protein derived adhesive improves strength and water resistance. RSC Advances 7(11): 6743-6752.   DOI
2 Chiavarini, M., Bigatto, R., Conti, N. 1978. Synthesis of urea-formaldehyde resins: NMR studies on reaction mechanisms. Die Angewante Makromolecule Chemie 70: 49-58.   DOI
3 Chuang, I., Gary, E. 1992. 13C CP/MAS NMR Study of the Structural Dependance of Urea-Formaldehyde Resins on Fromaldehyde-to-Urea Molar Ratios at Different Urea Concentrations and pH Values. Macromolecules 25(12): 3204-3226.   DOI
4 Crowe, G.A., Lynch, C.C. 1948. Urea-Formaldehyde Kinetic Studies. Journal of The American Chemical Society 70(11): 3795-3797.   DOI
5 de Jong, J.I., de Jonge, J. 1952. The reaction of urea with formaldehyde. Recueil des Travaux Chimiques des Pays-Bas 71: 643-660.   DOI
6 Dunky, M. 1998. Urea-formaldehyde (UF) adhesive resins for wood. International Journal of Adhesion and Adhesives 18(2): 95-107.   DOI
7 FAO. 2018. Forest Products Annual Market Review: 2017-2018. https://doi.org/10.18356/8265e672-en
8 Ferra, J.M., Mena, P.C., Martins, J., Mendes, A.M., Costa, M.R.N., Magalhaes, F.D., Carvalho, L.H. 2010. Optimization of the synthesis of urea-formaldehyde resins using response surface methodology. Journal of Adhesion Science and Technology 24(8): 1455-1472.
9 Goncalves, C., Paiva, N.T., Ferra, J.M., Martins, J., Magalhaes, F., Barros-Timmons, A., Carvalho, L. 2018. Utilization and characterization of amino resins for the production of wood-based panels with emphasis on particleboards (PB) and medium density fibreboards (MDF). A review. Holzforschung 72(8): 653-671.   DOI
10 Goncalves, C., Pereira, J., Paiva, N., Ferra, J., Martins, J., Magalhaes, F., Barros-Timmons, A., Carvalho, L. 2019. Impact of the Synthesis Procedure on Urea-Formaldehyde Resins Prepared by Alkaline-Acid Process. Industrial & Engineering Chemistry Research 58(14): 5665-5676.   DOI
11 Jada, S.S. 1988. The structure of urea-formaldehyde resins. Journal of Applied Polymer Science 35(6): 1573-1592.   DOI
12 Jeong, B., Park, B.D. 2019a. Performance of Urea-Formaldehyde Resins Synthesized at Two Different Low Molar Ratios with Different Numbers of Urea Addition. Journal of the Korean Wood Science and Technology 47(2): 221-228.   DOI
13 Jeong, B., Park, B.D. 2019b. Effect of molecular weight of urea-formaldehyde resins on their cure kinetics, interphase, penetration into wood, and adhesion in bonding wood. Wood Sci. Technol. 53(3): 665-685.   DOI
14 Jeong, B., Park, B.D., Causin, V. 2019. Influence of Synthesis Method and Melamine Content of Urea-Melamine-Formaldehyde Resins to Their Features in Cohesion, Interphase, and Adhesion Performance. Journal of Industrial and Engineering Chemistry 79(1): 87-96.   DOI
15 Jeong, B., Park, B.D. 2017. Effect of analytical parameters of gel permeation chromatography on molecular weight measurements of urea-formaldehyde resins. Journal of the Korean Wood Science and Technology 45(4): 471-481.   DOI
16 Jeong, B., Park, B.D. 2016. Measurement of molecular weights of melamine-urea-formaldehyde resins and their influences to properties of medium density fiberboards. Journal of the Korean Wood Science and Technology 44(6): 913-922.   DOI
17 Dazmiri, M.K, Kiamahalleh, M.V, Dorieh, A., Pizzi, A. 2019. Effect of the initial F/U molar ratio in urea-formaldehyde resins synthesis and its influence on the performance of medium density fiberboard bonded with them. International Journal of Adhesion and Adhesives 95: 102440. DOI: 10.1016/j.ijadhadh.2019.102440.   DOI
18 Kibrik, E.J., Steinhof, O., Scherr, G., Thiel, W.R., Hasse, H. 2013. Proof of ether-bridged condensation products in UF resins by 2D NMR spectroscopy. Journal of Polymer Research 20(4): 79-89.   DOI
19 Kim, M.G. 2001. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea - Formaldehyde Resins by 13 C NMR Spectroscopy. III. Journal of Applied Polymer Science 80(14): 2800-2814.   DOI
20 Kibrik, J., Steinhof, O., Scherr, G., Thiel, W.R., Hasse, H. 2014. On-Line NMR Spectroscopic Reaction Kinetic Study of Urea-Formaldehyde Resin Synthesis. Industrial & Engineering Chemistry Research 53(2): 12602-12613.   DOI
21 Kim, M.G. 2000. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea - Formaldehyde Resins by 13 C NMR Spectroscopy. II. Journal of Applied Polymer Science 75(10): 1243-1254.   DOI
22 Kim, M.G. 1999. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-Type Urea - Formaldehyde Resins by 13 C-NMR Spectroscopy. I. Journal of Polymer Science Part A: Polymer Chemistry 37(7): 995-1007.   DOI
23 Kissinger, H.E. 1957. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry 29(11): 1702-1706.   DOI
24 KS. 2016. KS F3101: Plywood. Korean Standard Association, Seoul, Republic of Korea.
25 Lady, J.H., Kesse, I., Adams, R.E. 1960. A study of thermal degradation and oxidation of polymers by infrared spectroscopy. Part II. Polybenzyl. Journal of Applied Polymer Science 3(7): 71-76.   DOI
26 Levendis, D., Pizzi, A., Ferg, E. 1992. The Correlation of Strength and Formaldehyde Emission with the Crystalline/Amorphous Structure of UF Resins. Holzforschung 46(3): 263-269.   DOI
27 Lubis, M.A.R., Park, B.D. 2018a. Modification of urea-formaldehyde resin adhesives with oxidized starch using blocked pMDI for plywood. Journal of Adhesion Science and Technology 32(24): 2667-2681.   DOI
28 Lubis, M.A.R., Park, B.D. 2018b. Analysis of the hydrolysates from cured and uncured urea-formaldehyde (UF) resins with two F/U mole ratios. Holzforschung 72(9): 759-768.   DOI
29 Vyazovkin, S. 2017. Isoconversional Kinetics of Polymers: The Decade Past. Macromolecular Rapid Communication 38(3): 1-21.   DOI
30 Wang, H., Cao, M., Li, T., Yang, L., Duan, Z., Zhou, X., Du, G. 2018. Characterization of the low molar ratio urea-formaldehyde resin with 13C NMR and ESI-MS: Negative effects of the post-added urea on the urea-formaldehyde polymers. Polymers (Basel) 10(6): 602-618.   DOI
31 Lubis, M.A.R., Jeong, B., Park, B.D., Lee, S.M., Kang, E.C. 2019. Effect of Synthesis Method and Melamine Content of Melamine-Urea-Formaldehyde Resins on Bond-Line Features in Plywood. Journal of the Korean Wood Science and Technology 47(5): 579-586.   DOI
32 Mantanis, G.I., Athanassiadou, E.T., Barbu, M.C., Wijnendaele, K. 2018. Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Material Science and Engineering 13(2): 104-116.   DOI
33 Mao, A., Hassan, E.B., Kim, M.G. 2013. Investigation of low mole ratio UF and UMF resins aimed at lowering the formaldehyde emission potential of wood composite boards. BioResources 8(2): 2453-2469.
34 Marvel, C.S., Boettner, F.E., Elliott, J.R., Yuska, H. 1946. The Structure of Urea-Formaldehyde Resins. Journal of the American Chemical Society 68(9): 1681-1686.   DOI
35 Minopoulou, E., Dessipri, E., Chryssikos, G.D., Gionis, V., Paipetis, A., Panayiotou, C. 2003. Use of NIR for structural characterization of urea-formaldehyde resins. International Journal of Adhesion and Adhesives 23(6): 473-484.   DOI
36 Myers, G. 1984. How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique. Forest Products Journal 34(5), 34-41.
37 Myers, G.E. 1986. Resin hydrolysis and mechanisms of formaldehyde release from bonded wood products. Madison, WI, Forest Products Research Society, pp. 119-156.
38 Nuryawan, A., Park, B.D., Singh, A.P. 2014. Penetration of urea-formaldehyde resins with different formaldehyde/urea mole ratios into softwood tissues. Wood Science and Technology 48(5): 889-902.   DOI
39 Park, B.D., Jeong, H.W., Lee, S.M. 2011. Morphology and Chemical Elements Detection of Cured Urea-Formaldehyde Resins Byung-Dae. Journal of Applied Polymer Science 120(3): 1475-1482.   DOI
40 Park, B.D., Chang Kang, E., Yong Park, J. 2006. Effects of formaldehyde to urea mole ratio on thermal curing behavior of urea-formaldehyde resin and properties of particleboard. Journal of Applied Polymer Science 101(3): 1787-1792.   DOI
41 Park, B.D., Kim, Y.S., Singh, A.P., Lim, K.P. 2003. Reactivity, Chemical Structure, and Molecular Mobility of Urea-Formaldehyde Adhesives Synthesized Under Different Conditions Using FTIR and Solid-State 13C CP/MAS NMR Spectroscopy. Journal of Applied Polymer Science 88(11): 2677-2687.   DOI
42 Park, B.D, Frihart, C.R., Yu, Y., Singh, A.P. 2013. Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method. European Polymer Journal 49(10): 3089-3094.   DOI
43 Park, B.D, Kim, J. 2008. Dynamic mechanical analysis of urea-formaldehyde resin adhesives with different formaldehyde-to-urea molar ratios. Journal of Applied Polymer Science. 108(3): 2045-2051.   DOI
44 Park, B.D., Causin, V. 2013. Crystallinity and domain size of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. European Polymer Journal 49(2): 532-537.   DOI
45 Pizzi, A. 1983. Aminoplastic wood adhesives. Wood Adhesives Chemistry and Technology, 1, pp.12-13.
46 Pizzi, A., Valenzuela, J. 1994. Theory and practice of the preparation of low formaldehyde emission uf adhesives. Holzforschung 48(3): 254-261.   DOI
47 Pratt, T.J., Johns, W.E., Rammon, R.M., Plagemann, W.L. 1985. A Novel Concept on the Structure of Cured Urea-Formaldehyde Resin. Journal of Adhesion 17(4): 275-295.   DOI
48 Salthammer, T. 2019. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Building and Environment 150: 219-232.   DOI
49 Akahira, T., Sunose, T. 1971. Joint Convention of Four Electrical Institutes. Science Education and Technology 16: 22-31.
50 Que, Z., Furuno, T., Katoh, S., Nishino, Y. 2007. Effects of urea-formaldehyde resin mole ratio on the properties of particleboard. Building and Environment 42(3): 1257-1263.   DOI
51 Shi, J., Li, J., Zhou, W., Zhang, D. 2007. Improvement of wood properties by urea-formaldehyde resin and nano-SiO2. Frontiers of Forestry in China 2(1): 104-109.   DOI
52 Siimer, K., Kaljuvee, T., Christjanson, P. 2003. Thermal behaviour of urea-formaldehyde resins during curing. Journal of Thermal Analysis and Calorimetry 72(2): 607-617.   DOI
53 Smythe, L.E. 1952. Urea-Formaldehyde Kinetic Studies. II. Factors Influencing Initial Reaction. Journal of the American Chemical Society 74(11): 2713-2715.   DOI
54 Smythe, L.E. 1951. Urea-Formaldehyde Kinetic Studies. I. Variation in Urea Solutions. Journal of the American Chemical Society 73(6): 2735-2738.   DOI
55 Soulard, C., Kamoun, C., Pizzi, A. 1999. Uron and uron-urea-formaldehyde resins. Journal of Applied Polymer Science 72(2): 277-289.   DOI
56 Steinhof, O., Kibrik, E.J., Scherr, G., Hasse, H. 2014. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis. Magnetic Resonance in Chemistry 52(4): 138-62.   DOI
57 TAPPI. 2001. Analysis of formaldehyde in aqueous solutions and of free formaldehyde in resins. TAPPI T 600 cm-01. United States