• Title/Summary/Keyword: urea nitrogen

Search Result 1,327, Processing Time 0.031 seconds

A Study on the Utilization of Dietary [15N]urea in Cecal Ligated Chickens (맹장 결찰계(Cecal-ligated Chicken)를 이용한 [15N]urea의 이용성에 관한 연구)

  • Son, Jang-Ho
    • Korean Journal of Poultry Science
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • The effect of cecal ligation on the utilization of dietary [15N]urea in chickens fed 5 % protein diet plus urea were investigated. Nitrogen balance and utilization tended (P<0.01) to increase by cecal ligation. Total uric acid excretion was significantly decrease by (P<0.01) cecal ligation in chickens from origin of diet and urea (P<0.01). Excretion of ammonia was increased in chickens from origin of diet, where as it decreased in chickens an urea diet (P<0.01). Amount of urea nitrogen excretion from origin of urea was significantly decrease (P<0.01) by cecal ligation, but cecal ligated chicken fed 5% protein diet with urea showed 51.6% urea utilization. Result obtained in present study indicates that ceca is having beneficial role for urea utilization in chicken fed protein deficient diets, but ceca do not always positive role for nitrogen utilization.

Optimizing the Performance of Three-Dimensional Nitrogen-Doped Graphene Supercapacitors by Regulating the Nitrogen Doping Concentration

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide (GO) as the raw material, urea as the reducing agent and nitrogen as the dopant. The morphology, structure, composition and electrochemical properties of the samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, electrical conductivity and electrochemical tests. The results show that urea can effectively reduce GO and achieve nitrogen doping under the hydrothermal conditions. By adjusting the mass ratio of raw materials to dopants, the graphene with different nitrogen doping contents can be obtained; the nitrogen content range is from 5.28~6.08% (atomic fraction percentage).When the ratio of dopant to urea is 1:30, the nitrogen doping content reaches a maximum of 6.08%.The supercapacitor performance test shows that the nitrogen content prepared by the ratio of 6.08% is the best at 0.1 A·g-1. The specific capacitance is 95.2 F·g-1.

Quantitative Comparison of Diversity and Conformity in Nitrogen Recycling of Ruminants

  • Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • Domestic ruminant animals are reared in diverse production systems, ranging from extensive systems under semi-arid and tropical conditions with poor feed resources to intensive systems in temperate and cold areas with high quality feed. Nitrogen (N) recycling between the body and gut of ruminants plays a key role in the adaptation to such diverse nutritional conditions. Ammonia and microbial protein produced in the gut and urea synthesized in the liver are major players in N-recycling transactions. In this review, we focus on the physiological factors affecting urea production and recycling. Sheep and buffalo probably have higher abilities to reabsorb urea from the kidney compared with cattle. This affects the degree of urea-N recycling between the body and gut at both low and high N intakes. The synthesis and gut entry of urea also differs between cattle bred for either dairy or beef production. Lactating dairy cows show a higher gut entry of urea compared with growing cattle. The synthesis and recycling of urea dramatically increases after weaning, so that the functional development of the rumen exerts an essential role in N transactions. Furthermore, high ambient temperature increases urea production but reduces urea gut entry. An increase in total urea flux, caused by the return to the ornithine cycle from the gut entry, is considered to serve as a labile N pool in the whole body to permit metabolic plasticity under a variety of physiological, environmental and nutritional conditions.

Effect of NH3 Uniformity Index on SCR System According to Urea Spray Characteristics (요소수 분무특성이 SCR시스템 내 분무균일도에 미치는 영향)

  • Kim, Se Hun;Ko, Jin Seok;Ko, Jae Yu;Cho, Young Jun;Lee, Dong Ryu
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.178-184
    • /
    • 2019
  • Diesel engines have the advantages of higher thermal efficiency and lower CO2 emissions than gasoline engines, but have the disadvantages that particulate matter (PM) and nitrogen oxides (NOx) emissions are greater than those of gasoline engines. In particular, nitrogen oxides (NOx) emitted from diesel engines generates secondary ultrafine dust (PM2.5) through photochemical reactions in the atmosphere, which is fatal to humans. In order to reduce nitrogen oxides (NOx), pre-treatment systems such as EGR, post-treatment systems such as LNT and Urea SCR have been actively studied. The Urea SCR consists of an injection device injecting urea agent and a catalytic device for reducing nitrogen oxides (NOx). The nitrogen oxide (NOx) reduction performance varies greatly depending on the urea uniformity in the exhaust pipe. In this study, spray characteristics according to the spray hole structure were confirmed, and the influence of spray uniformity on spray characteristics was studied through engine evaluation.

Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells

  • Kim, Ki-Yong;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • v.19
    • /
    • pp.40-46
    • /
    • 2016
  • Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.

Nitrogen Metabolism in Lactating Goats Fed with Diets Containing Different Protein Sources

  • Santos, A.B.;Pereira, M.L.A.;Silva, H.G.O.;Pedreira, M.S.;Carvalho, G.G.P.;Ribeiro, L.S.O.;Almeida, P.J.P.;Pereira, T.C.J.;Moreira, J.V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.658-666
    • /
    • 2014
  • This study aimed to evaluate urea excretion, nitrogen balance and microbial protein synthesis in lactating goats fed with diets containing different protein sources in the concentrate (soybean meal, cottonseed meal, aerial part of cassava hay and leucaena hay). Four Alpine goats whose mean body weight was $42.6{\pm}6.1kg$ at the beginning of the experiment, a mean lactation period of $94.0{\pm}9.0days$ and a production of $1.7{\pm}0.4kg$ of milk were distributed in a $4{\times}4$ Latin square with four periods of 15 days. Diets were formulated to be isonitrogenous, containing 103.0 g/kg of CP, 400 g/kg of Tifton 85 hay and 600 g/kg of concentrate. Diet containing cottonseed meal provided (p<0.05) increased excretion of urea and urea nitrogen in the urine (g/d and mg/kg of BW) when compared with leucaena hay. The diets affected the concentrations of urea nitrogen in plasma (p<0.05) and excretion of urea nitrogen in milk, being that soybean meal and cottonseed meal showed (p<0.05) higher than the average aerial part of the cassava hay. The use of diets with cottonseed meal as protein source in the concentrate in feeding of lactating goats provides greater nitrogen excretion in urine and negative nitrogen balance, while the concentrate with leucaena hay as a source of protein, provides greater ruminal microbial protein synthesis.

Effects of Urease Inhibitor, Nitrification Inhibitor, and Slow-release Fertilizer on Nitrogen Fertilizer Loss in Direct-Seeding Rice

  • Lee, Jae-Hong;Lee, Ho-Jin;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.230-235
    • /
    • 1999
  • To study the effects of an urease inhibitor, N-(n-butyl)-thiophosphoric triamide (NBPT), and a nitrification inhibitor, dicyandiamide (DCD), on nitrogen losses and nitrogen use efficiency, urea fertilizer with or without inhibitors and slowrelease fertilizer (synthetic thermoplastic resins coated urea) were applied to direct-seeded flooded rice fields in 1998. In the urea and the urea+DCD treatments, NH$_4$$^{+}$ -N concentrations reached 50 mg N L$^{-1}$ after application. Urea+NBPT and urea+ NBPT+DCD treatments maintained NH$_4$$^{+}$ -N concentrations below 10 mg N L$^{-1}$ in the floodwater, while the slow-release fertilizer application maintained the lowest concentration of NH$_4$$^{+}$ -N in floodwater. The ammonia losses of urea+NBPT and urea+NBPT+DCD treatments were lower than those of urea and urea+DCD treatments during the 30 days after fertilizer application. It was found that N loss due to ammonia volatilization was minimized in the treatments of NBPT with urea and the slow-release fertilizer. The volatile loss of urea+DCD treatment was not significantly different from that of urea surface application. It was found that NBPT delayed urea hydrolysis and then decreased losses due to ammonia volatilization. DCD, a nitrification inhibitor, had no significant effect on ammonia loss under flooded conditions. The slow-release fertilizer application reduced ammonia volatilization loss most effectively. As N0$_3$$^{[-10]}$ -N concentrations in the soil water indicated that leaching losses of N were negligible, DCD was not effective in inhibiting nitrification in the flooded soil. The amount of N in plants was especially low in the slow-release fertilizer treatment during the early growth stage for 15 days after fertilization. The amount of N in the rice plants, however, was higher in the slow-release fertilizer treatment than in other treatments at harvest. Grain yields in the treatments of slow-release fertilizer, urea+NBPT+ DCD and urea+NBPT were significantly higher than those in the treatments of urea and urea+DCD. NBPT treatment with urea and the slow-release fertilizer application were effective in both reducing nitrogen losses and increasing grain yield by improving N use efficiency in direct-seeded flooded rice field.field.

  • PDF

Analysis of the Fertilizing Effects of Hydroponic Waste Solution on Lettuce (Lactuca sativa var. captitata) Cultivation - Based on Inorganic Nitrogen Content - (상추재배를 위한 시설하우스 배액의 비효평가 - 무기태 질소를 중심으로 -)

  • Yun, Sung-Wook;Lim, Ju-Mi;Moon, Jongpil;Jang, Jaekyoung;Park, Minjung;Son, Jinkwan;Lee, Hyun-Ho;Seo, Hyomin;Choi, Duk-Kyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.13-21
    • /
    • 2021
  • The feasibility of HWS for agricultural use was analyzed through a crop cultivation test to utilize the hydroponic waste solution (HWS) generated from the nutriculture greenhouse. The fertilizing effect of HWS was assessed on the basis of the inorganic nitrogen (N) mostly existed in HWSs, and nitrogen (urea) fertilizer. Lettuce was selected as the target crop influenced by the soil treatment and also for the crop cultivation test. Thus, the change in growth characteristics of lettuce and that in chemical characteristics of the soil were investigated. In terms of the growth of lettuce, the C control group with 70% nitrogen (urea) fertilizer and 30% HWS and the D control group with 50% nitrogen (urea) fertilizer and 50% HWS were more effective than the practice control group (B) with 100% nitrogen (urea) fertilizer. The results of this study confirmed the combined applicability of the chemical fertilizer and HWS for crop cultivation. Because NO3-N present in HWS has a high possibility of leaching into the soil, its applicability as a fertilizer has been considered to be relatively low in Korea. However, if an appropriate mixing ratio of urea fertilizer and HWS could be applied, the problems associated with leaching of nitrate nitrogen could be reduced with beneficial effects on crop cultivation. Thus, future studies are required on the treatment effect of HWS with repeated cultivation, impact assessment on the surrounding environment, and appropriate fertilization methods using nitrogen (urea) fertilizer and HWS. These studies would facilitate the sustainable recycling of HWS.

Development of Carbon Felt Electrode Using Urea for Vanadium Redox Flow Batteries (Urea를 이용한 바나듐 레독스 흐름 전지용 카본 펠트 전극 개발)

  • Kim, So Yeon;Kim, Hansung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.408-412
    • /
    • 2019
  • In this study, nitrogen doped carbon felt was prepared by pyrolysis of urea at high temperature and applied as an electrode for vanadium redox flow cell. Urea is easier to handle than ammonia and forms $NH_2$ radicals at higher temperatures, creating a nitrogen functional group on the carbon surface and acting as an active site in the vanadium redox reaction. Therefore, the discharge capacity of activated carbon felt electrodes using urea was 14.9 Ah/L at a current density of $150mA/cm^2$, which is 23% and 187% higher than OGF and GF, respectively. These results show the possibility that activated carbon felt electrode using urea can be used as electrode material for redox flow battery.

Influence of the Novel Urease Inhibitor Hydroquinone on Growing Lamb Nitrogen Utilization

  • Zhang, Y.G.;Shan, A.S.;Bao, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.992-997
    • /
    • 2002
  • Two in vivo experiments were conducted to evaluate the effect of novel urease inhibitor hydroquinone (HQ) on ammonia release rate from urea hydrolysis, nitrogen balance, nutrient digestibility and efficiency of microbial protein synthesis. In Exp. 1, twelve crossbred cannulated lambs were randomly assigned within initial body weight block to one of four HQ treatments, which included 0 (control), 30, 60 or 80 mg HQ/kg DM intake. Ammonia concentration and pH of ruminal fluid were immediately measured at 0, 2, 4, 6 and 8 h after feeding. Increasing the dose of HQ tended (p<0.15) to linearly decrease NH3 formation. The ammonia peak concentration (2 h post-feeding) in animals receiving HQ was approximately one-half of that in animals not receiving HQ (p<0.01), and a relatively sustained ammonia release could be obtained at the dose of 30 or 60 mg HQ/kg DM. In Exp. 2, sixteen intact crossbred lambs (weight $40{\pm}0.8kg$) were used in a $2{\times}2$ factorial design experiment. The four rations consisting of soybean meal-based (SBM) or urea-based (Urea) nitrogen source with or without HQ (S1, S0, U1 and U0) were fed in digestion and N balance trials. Apparent digestibility of major nutrients except that of ADF was not affected by either nitrogen source or addition of HQ. Regardless of nitrogen source, supplementation of HQ significantly improved ADF digestibility (p<0.05). The various ration had no effects on N metabolism in the presence of HQ. There was significant difference between total purine derivatives (PD), estimated efficiency of microbial N synthesis (p<0.05) and urea-N excretion (p<0.01) in the urine for the SBM ration and for the Urea ration. However, HQ had little influence on efficiency of microbial N synthesis as proportion of daily intake of total tract digestible OM (p>0.05). No interactions between main nitrogen source and HQ were measured throughout the trial. Results of this study suggest that addition of HQ to ration may improve ADF digestion with having no negative effect on N metabolism and microbial protein production.