• Title/Summary/Keyword: urea formaldehyde resin

Search Result 123, Processing Time 0.022 seconds

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.

Physico-mechanical Properties and Formaldehyde/TVOC Emission of Particleboards with Volcanic Pozzolan

  • Kim, Sumin;An, Jae-Yoon;Kim, Jin-A;Kim, Hee-Soo;Kim, Hyun-Joong;Kim, Hak-Gyeom
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.39-50
    • /
    • 2007
  • The purpose of this study was to investigate the physico-mechanical properties and characteristics on reduction of formaldehyde and total volatile organic compound (TVOC) emission from particleboard (PB) with added volcanic pozzolan. Pozzolan was added as a scavenger at the level of 1, 3, 5, and 10 wt.% of urea formaldehyde (UF) resin for PB manufacture. The moisture content, density, thickness swelling, water absorption and physical properties of PBs were examined. Three-point bending strength and internal bond strength were determined using a universal testing machine. Formaldehyde and TVOC were determined by desiccator and 20L small chamber methods. With increasing pozzolan content the physical and mechanical properties of the PBs were not significantly changed, but formaldehyde and TVOC emissions were decreased. Because pozzolan has a rough and irregular surface with porous form, it can be used as a scavenger for PBs at a content up to 10 wt.% without any detrimental effect on the physical and mechanical properties.

Change in Chemical Compositions of Leachate and Medium Density Fiberboard from a Laboratory-scale Simulated Landfill

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.231-240
    • /
    • 2016
  • The change in chemical compositions of leachate and medium density fiberboard (MDF) from a laboratory-scale simulated landfill which constructed in a plastic container containing alternating layers of soil and MDF was investigated to evaluate decomposing of MDF in soil. Four treatments were conducted: 1) MDF in soil, 2) MDF only, 3) cured UF resin in soil, and 4) soil only. Molecular weight (MW) distribution of compounds in leachate from soil only treatment did not change over time. In UF resin in soil treatment, the MW distribution shifted to a lower MW distribution over time, while the peak shifted to the left indicated changing to higher MW distribution in leachate from treatment 1 and 2 contained MDF. Higher percent nitrogen in leachate was observed in MDF containing treatments due to the UF resin in the MDF. The percent carbon slightly increased in MDF only while that greatly decreased in MDF in soil treatment maybe due to bacterial activity. The percent of extractable materials from the MDF decreased greatly on day 35 compare to day 0, and subsequently did not change much on day 77. In contrast, percent holocellulose and lignin did not change much over time. No structural change of the wood fiber in MDF occurs during the study. Water-soluble materials from MDF in soil contributed the change in chemical composition of leachate.

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

Properties and Glue Shear Strength of the Water Soluble Urea-Phenol Copolymer Adhesive as a High Temperature Curing Binder for Plywood (합판용(合板用) 고온경화형(高温硬化型) 수용성(水溶性) 요소(尿素)·페놀공축합수지(共縮合樹脂)의 성질(性質)과 그 접착강도(接着強度))

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.51-57
    • /
    • 1983
  • Properties and glue shear strength of each water soluble rues-phenol copolymer adhesive and phenolic resin adhesive were examined as a high temperature curing binder through the manufacture of plywood made of Kapur veneer. The former has different molar ratio and the latter was made from different catalyst method. The results are summarized as follows: 1) Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.67 to 0.82 and their moisture contents met the K.S. standard 2) In dry and wet shear strength, adhesives with 60 percent of non volatile content showed higher values than those with 50 percent except phenolic resin. Urea-phenol copolymer resin with 20 percent of phenol content exhibited the highest, and that with 70 percent the lowest. Filling effect of wood flour on the bonding strength is great in urea-phenol copolymer resin with more than 50 percent of phenol content, especially significant in 50 percent of non volatile content including alkali catalyst phenolic resin. Alkali and acid catalyst methods were the highest among the adhesive manufacture methods. In wet strength, urea resin belongs to the lowest group. 3) In glue shear strength after boiling and drying test, no method for manufacturing phenolic formaldehyde resin adhesive was stronger than alkali and acid catalyst methods. Phenolic resin made from alkali catalyst method needs a wood flour filler to improve the bonding quality. Urea-phenol copolymer resin with 10 percent of phenol content showed the reasonable water resistance.

  • PDF

Reaction Mechanism and Curing Characteristics of Chicken Feather-Based Adhesives and Adhesive Properties of Medium-Density Fiberboard Bonded with the Adhesive Resins (닭털로 제조한 접착제의 반응기작 및 경화 특성과 이를 이용하여 제조한 중밀도섬유판의 접착 특성)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.385-394
    • /
    • 2017
  • In this study, reaction mechanism and curing characteristics of adhesives formulated with NaOH- and $H_2SO_4$-hydrolyzed chicken feather (CF) and formaldehyde-based crosslinkers were investigated by FT-IR and DSC. In addition, adhesive properties and formaldehyde emission of medium-density fiberboards (MDF) applied with the adhesives were measured. CF-based adhesives having a solid content of 40% and over were very viscous at $25^{\circ}C$, but the viscosity reduced to $300{\sim}660m{\cdot}Pa{\cdot}s$ at $50^{\circ}C$. Consequently, the adhesives could be used as a sprayable resin. Through the FT-IR spectra of liquid and cured CF-based adhesives, addition reaction of methylol group and condensation reaction between the functional groups with the use of formaldehyde-based crosslinkers were identified. From the analysis of DSC, it was elucidated for CF-based adhesives to require a higher pressing temperature or longer pressing time comparing to commercial urea-formaldehyde (C-UF) resin. MDF bonded with CF-based adhesives, which was formulated with 5% NaOH-hydrolyzed CF (CF-AK-5%) and PF of formaldehyde to phenol mole ratio of 2.5 (PF-2.5), and pressed for 8 min had higher MOR and IB than those with other CF-based adhesives. MOR and IB of MDF bonded with the CF-based adhesives regardless of formulation type and pressing time were higher than those with C-UF resin. When the values compared with the minimum requirements of KS standard, IB exceeded the KS standard in all formulations and pressing time, but MOR of only MDF bonded with CF-AK-5% and PF-2.5 and pressed for 8 min satisfied the KS standard. What was worse, 24-TS of MDF bonded with all CF-based adhesives did not satisfied the KS standard. However, MOR and 24-TS can be improved by increasing the target density of MDF or the amount of wax emulsion, which is added to improve the water resistance of MDF. Importantly, the use of CF-based adhesives decreased greatly the formaldehyde emission. Based on the results, we reached the conclusion that CF-based adhesives formulated under proper conditions had a potential as a sprayable resin for the production of wood panels.

Physical Properties of Hybrid Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 물리적 특성)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Han;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.406-417
    • /
    • 2012
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the functionalities such as the deodorization and the absorbability on the green tea-wood fiber hybrid boards in the previous researches. The effects of kind of raw materials and the component ratio of raw materials on dimensional stability, deodorization and emission of formaldehyde were investigated. Thickness swelling of the hybrid composite boards increased with increasing of component ratio of green tea and charcoals, but the values were markedly lower than that of Korean standard (KS) for commercial medium density fiber board (MDF), except for hybrid composite boards composed of greed tea, activated charcoal and wood fiber. Reduction rate of ammonia gas for the hybrid composite boards composed of green tea, activated charcoal and wood fiber showed a high value of 96% after 30 minute from the beginning of the test, and the other hybrid boards also showed a high value of about 95% after one hour. Emission amount of formaldehyde was similar to that of $E_0$ grade in case of using $E_1$ grade urea resin, and was similar to that of super $E_0$ grade in case of using $E_0$ grade urea resin.

Evaluating The Water Resistance of Wood Adhesives Formulated with Chicken Feather Produced from Poultry Industry (도계부산물인 닭털을 이용한 목재접착제의 내수성 평가)

  • Park, Dae-Hak;Yang, In;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.126-138
    • /
    • 2017
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a raw material of wood adhesives. For the purpose, adhesive resins were formulated with NaOH- and $H_2SO_4$-hydrolyzed CF as well as crosslinkers, and then the properties and water resistance of the adhesive resins against hot water were measured. CF was made of mainly keratin-type protein, and no or very low content of heavy metals was detected. Hydrolysis rate of CF increased as NaOH concentration in hydrolysis solutions increased. However, in order to minimize the loss of adhesive property of protein itself by the severe hydrolysis of CF and to seek its proper hydrolysis conditions, NaOH concentrations in hydrolysis solution determined to adjust to 5%, 7.5% and 10%. In the NaOH-hydrolyzed CF, $H_2SO_4$-hydrolyzed CF as a hardener and crosslinker were added to formulate CF-based adhesive resins. Solid content of the resins ranged from 28.3% to 44.8% depending on hydrolysis conditions and type of crosslinker. Viscosity of the resins at $25^{\circ}C$ was very high. However, when the temperature of the resins was increased to $50^{\circ}C$, the viscosity decreased greatly and thus the resins could be applied as a sprayable resin. Retention rate measured to evaluate the water resistance of adhesive resins was the highest in the cured resin formulated with 5% NaOH-hydrolyzed CF and 5% $H_2SO_4$-hydrolyzed CF of 10% based on the solid weight as a hardener. Retention rate depending on crosslinkers added into adhesive resins was the highest phenol-formaldehyde (PF) followed by melamine-urea-formaldehyde (MUF) and formalin. The retention rate of CF-based adhesives formulated with 5% NaOH-hydrolyzed CF, PF and $H_2SO_4$-hydrolyzed CF of 10% and over did not differ statistically from that of commercial MUF resins. All of CF-based adhesives formulated with PF as a crosslinker and one with 5% NaOH-hydrolyzed CF of 55%, 5% $H_2SO_4$-hydrolyzed CF of 15%, and MUF of 30% on the basis of solid weight could be substituted for commercial urea-formaldehyde resins, From the results, CF can be used as a raw material of wood adhesives if hydrolyzed in proper conditions.

Characteristics of Low Density Fiberboards Bonded with Different Adhesives for Thermal Insulation (II) - Formaldehyde·Total Volatile Organic Compounds Emission Properties and Combustion Shapes - (다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(II) - 폼알데하이드·총휘발성유기화합물 방출 특성 및 연소 형상 -)

  • Jang, Jae-Hyuk;Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.580-587
    • /
    • 2017
  • Woodfiber insulation board can be considered as a one of the key material for low energy consumption, comfortable and safety construction of residential space because of its eco-friendly and high thermal insulation performance. This study was carried out to investigate the formaldehyde (HCHO) total volatile organic compounds (TVOC) emission properties and combustion shapes by flame test of low density fiberboards (LDFs) prepared with different adhesives. HCHO TVOC emission and combustion properties of LDFs prepared by melamine urea formaldehyde (MUF), phenol formaldehyde (PF), emulsified methylene diphenyl diisocyanate (eMDI) and latex resin adhesives were measured by desiccator method, 20 L chamber method, and flame test, respectively. As results, LDFs manufactured by MUF, eMDI and latex resin adhesives satisfied the Super $E_0$ grade of HCHO emission performance except PF resin. Furthermore, TVOC emission of all LDFs were satisfied the Korean indoor air quality standard (below $400{\mu}g/m^2{\cdot}h$). Especially, LDF with eMDI resin adhesive showed the lowest HCHO and TVOC emissivity, that $0.14mg/{\ell}$, $12{\mu}g/m^2{\cdot}h$, respectively. However, eMDI emitted the small amount ($3{\mu}g/m^2{\cdot}h$) of toluene in VOC components. In the flame test, LDF with MUF resin adhesives showed the most favorable shape after flame test compare to LDFs prepared other adhesives. Based on HCHO and TVOC emission, and combustion shapes, MUF resin adhesive may be recommended to prepare LDF for insulation purpose.

Thermal Stability of Autonomic Microcapsules with Healing Agent (자가치료용 마이크로캡슐의 열적 안정성 연구)

  • 박희원;윤성호;홍순지;이종근
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.65-68
    • /
    • 2002
  • This study dealt with autonomic microcapsules with the healing agent for damage repair of the composite structures. Autonomic microcapsules were made of a urea-formaldehyde resin for shell of microcapsule and a DCPD for the healing agent. Thermal analysis was conducted by using a DSC and a TGA for the healing agent, microcapsules without the healing agent, and microcapsules with the healing agent. According to the results, autonomic microcapsules were verified to be so thermally stable that the healing agent was kept inside the microcapsule until the shell of microcapsules were burned out.

  • PDF