• Title/Summary/Keyword: ureF

Search Result 7, Processing Time 0.026 seconds

Expession of the Recombinant Klebsiella aerognes UreF Protein as a MalE Fusion

  • Kim, Keun-Young;Yang, Chae-Ha;Lee, Mann-Hyung
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.274-278
    • /
    • 1999
  • Expression of the active urease of the enterobacterium, Klebsiella aerogens, requires the presence of the accessory genes (ureD, ureE, ureF, and ureG) in addition to the three structural genes (ureA, ureB, and ureC). These accessory genes are involved in functional assembly of the nickel-metallocenter for the enzyme. Characterization of ureF gene has been hindered, however, since the UreF protein is produced in only minute amount compared to other urease gene products. In order to overexpress the ureF gene, a recombinant pMAL-UreF plasmid was constructed from which the UreF was produced as a fusion with maltose-binding protein. The MBP-UreF fusion protein was purified by using an amylose-affinity column chromatography followed by an anion exchange column chromatography. Polyclonal antibodies raised against the fusion protein were purified and shown to specifically recognize both MBP and UreF peptides. The UreF protein was shown to be unstable when separated from MBP by digestion with factor Xa.

  • PDF

NICKEL INCORPORATION INTO Klebsiella aerogenes UREASE (Klebsiella aerogenes Urease로의 닉켈의 도입)

  • Lee, Mann-Hyung-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.69-80
    • /
    • 1994
  • Although ureases play important roles in microbial nitrogen metabolism and in the pathogenesis of several human diseases, little is known of the mechanism of metallocenter biosynthesis in this Ni-Containing enzyme. Klebsiella aerogenes urease apo-protein was purified from cells grown in the absence of Ni. The purified apo-enzyme showed the same native molecular weight, charge, and subunit stoichiometry as the holo-enzyme. Chemical modification studies were consistent with histidinyl ligation of Ni. Apo-enzyme could not be activated by simple addition of Ni ions suggesting a requirement for a cellular factor. Deletion analysis showed that four accessory genes (ureD, ureE, ureF, and ureG) are necessary for the functional incorporation of the urease metallocenter. Whereas the $\Delta$ureD, $\Delta$ureF, and $\Delta$ureG mutants are inactive and their ureases lack Ni, the $\Delta$ureE mutants retain partial activity and their ureases possess corresponding lower levels of Ni. UreE and UreG peptides were identified by SDS-polyacrylamide gel comparisons of mutant and wild type cells and by N-terminal sequencing. UreD and UreF peptides, which are synthesized at ve교 low levels, were identified by using in vitro transcription/translation methods. Cotransformation of E. coli cells with the complementing plasmids confirmed that ureD and ureF gene products act in trans. UreE was purified and characterized. immunogold electron microscopic studies were used to localize UreE to the cytoplasm. Equilibrium dialysis studies of purified UreE with $^{63}$ NiC1$_2$ showed that it binds ~6 Ni in a specific manner with a $K_{d}$ of 9.6 $\pm$1.3 $\mu$M. Results from spectroscopic studies demonstrated that Ni ions are ligated by 5 histidinyl residues and a sixth N or O atom, consistent with participation of the polyhistidine tail at the carboxyl termini of the dimeric UreE in Ni binding. With these results and other known features of the urease-related gene products, a model for urease metallocenter biosynthesis is proposed in which UreE binds Ni and acts as a Ni donor to the urease apo-protein while UreG binds ATP and couples its Hydrolysis to the Ni incorporation process.ouples its Hydrolysis to the Ni incorporation process.s.

  • PDF

Activation of Urease Apoprotein of Helicobacter pylori

  • Cho, Myung-Je;Lee, Woo-Kon;Song, Jae-Young;An, Young-Sook;Choi, Sang-Haeng;Choi, Yeo-Jeong;Park, Seong-Gyu;Choi, Mi-Young;Baik, Seung-Chul;Lee, Byung-Sang;Rhee, Kwang-Ho
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.533-542
    • /
    • 1999
  • H. pylori produces urease abundantly amounting to 6% of total protein of bacterial mass. Urease genes are composed of a cluster of 9 genes of ureC, ureD, ureA, ureB, ureI, ureE, ureF, ureG, ureH. Production of H. pylori urease in E. coli was studied with genetic cotransformation. Structural genes ureA and ureB produce urease apoprotein in E. coli but the apoprotein has no enzymatic activity. ureC and ureD do not affect urease production nor enzyme activity ureF, ureG, and ureH are essential to produce the catalytically active H. pylori urease of structural genes (ureA and ureB) in E.coli. The kinetics of activation of H. pylori urease apoprotein were examined to understand the production of active H. pylori urease. Activation of H. pylori urease apoprotein, pH dependency, reversibility of $CO_2$ binding, irreversibility of $CO_2$ and $Ni^{2+}$ incorporation, and $CO_2$ dependency of initial rate of urease activity have been observed in vitro. The intrinsic reactivity (ko) for carbamylation of urease apoprotein co expressed with accessory genes was 17-fold greater than that of urease apoprotein expressed without accessory genes. It is concluded that accessory genes function in maximizing the carbamylating deprotonated ${\varepsilon}$-amino group of Lys 219 of urease B subunit and metallocenter of urease apoprotein is supposed to be assembled by reaction of a deprotonated protein side chain with an activating $CO_2$ molecule to generate ligands that facilitate productive nickel binding.

  • PDF

Cloning and Characterization of the Urease Gene Cluster of Streptococcus vestibularis ATCC49124

  • Kim Geun-Young;Lee Mann-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.286-290
    • /
    • 2006
  • A genomic library of Streptococcus vestibularis ATCC49124 was constructed in an E. coli plasmid vector, and the urease-positive transformants harboring the urease gene cluster were isolated on Christensen-urea agar plates. The minimal DNA region required for urease activity was located in a 5.6 kb DNA fragment, and a DNA sequence analysis revealed the presence of a partial ureI gene and seven complete open reading frames, corresponding to ureA, B, C, E, F, G, and D, respectively. The nucleotide sequence over the entire ure gene cluster and 3'-end flanking region of S. vestibularis was up to 95% identical to that of S. salivarius, another closely related oral bacterium, and S. thermophilus, isolated from dairy products. The predicted amino acid sequences for the structural peptides were 98-100% identical to the corresponding peptides in S. salivarius and S. thermophilus, respectively, whereas those for the accessory proteins were 96-100% identical. The recombinant E. coli strain containing the S. vestibularis ure gene cluster expressed a high level of the functional urease holoenzyme when grown in a medium supplemented with 1 mM nickel chloride. The enzyme was purified over 49-fold by using DEAE-Sepharose FF, Superdex HR 200, and Mono-Q HR 5/5 column chromatography. The specific activity of the purified enzyme was 2,019 U/mg, and the Michaelis constant ($K_{m}$) of the enzyme was estimated to be 1.4 mM urea. A Superose 6HR gel filtration chromatography study demonstrated that the native molecular weight was about 196 kDa.

ON THE RICCI CURVATURE OF SUBMANIFOLDS IN THE WARPED PRODUCT L × f F

  • Kim, Young-Mi;Pak, Jin-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.693-708
    • /
    • 2002
  • The warped product L$\times$$_{f}$ F of a line L and a Kaehler manifold F is a typical example of Kenmotsu manifold. In this paper we determine submanifolds of L$\times$$_{f}$ F which are tangent to the structure vector field and satisfy certain conditions concerning with Ricci curvature and mean curvature.ure.

VARIATION OF UREASE GENES(ureC) FROM Streptococcus salivarius (Streptococcus salivarisu의 요소분해효소 유전자 변이에 관한 연구)

  • Choi, Hye-Jin;Lee, Jin-Yong;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.535-545
    • /
    • 1999
  • Crease of Streptococcus salivarius is believed to play a critical role in bacterial ecology and pH homeostasis in the mouth, and consequently affect the pathogenesis of dental caries and periodontal diseases. Expression of the urease gene is greatly enhanced by low p. f. excess of Carbohydrate, and faster growth. It was observed that urease activity of the strains of S. salivarius that exhibited no of low urease activity was not increased even in low pH condition. In this study, it was hypothesized that the urease gene of the strains is absent, defected, or greatly changed by genetic combination. In order to prove this hypothesis, chromosomes were obtained from 28 S. salivarius strains which had been isolated from normal teeth and carious lesions, subjected to polymerase chain reaction (PCR) using primers encoding highly conserved sequence from ureC, and then the obtained PCR products were compared. The results were as follows: 1. After PCR the strains generated either one of 0.54- and 1.3-kbp PCR products, or none. 2. All 16 strains having a higher urease activity(<50${\mu}mol/min/mg$) produced 0.54-kbp PCR products. 3. Twelve strains without urease activity and with a lower urease activity(<50${\mu}mol/min/mg$) yield either one of 0.54 and 1.3-kbp PCR products, or none. 4. The DNA sequence of the 0.54-kbp PCR product (pCAP-0.54) exhibited 95% identity to the ureC of S. salivarus 57.I; 30bp were found to be different, which led to difference of only 2 amino acids in the sequence. 5. The DNA sequence of the 1.3-kbp PCR product(pCAP-1.3) was found to be highly homologous to the aminopeptidase C gene of Streptococcus thermophilus. Overall results indicate that there are considerable variations of the urease genes from S. salivarus strains and the variations may affect the uncolytic activity of the bacteria directly of indirectly.

  • PDF

The Structural and Electrical Properties of Vanadium Oxide Thin Films as $O_2/(Ar+O_{2})$ ratio ($O_2/(Ar+O_{2})$비에 따른 바나듐 산화막의 구조적, 전기적 특성)

  • 최용남;최복길;최창규;김성진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.729-732
    • /
    • 2001
  • In this study, the effect of oxygen partial pressure on the electrical properties of vanadium oxide(VO$_{x}$) thin films were investigated. The thin films were prepared by r.f. magnetron sputtering from V$_2$O$_{5}$ target in a gas mixture of argon and oxygen. The oxygen partial pressure ratio is changed from 0% to 8%. I-V characteristics were distinguished between linear and nonlinear region. In the low field region the conduction is due to Schottky emission, while at high fields it changes to Fowler-Nordheim tunneling type conduction. The conductivity measurements have shown an Arrhenius dependence of the conductivity on the temperature.ure.

  • PDF