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ON THE RICCI CURVATURE OF SUBMANIFOLDS
IN THE WARPED PRODUCT L x; F

YounNg-Mi KiMm AND JIN SUuK PAK

ABSTRACT. The warped product L x ¢ F of a line L and a Kaehler
manifold F is a typical example of Kenmotsu manifold. In this
paper we determine submanifolds of L x ¢ F' which are tangent to
the structure vector field and satisfy certain conditions concerning
with Ricci curvature and mean curvature.

1. Fundamental equations on Kenmotsu manifold

A Kenmotsu manifold ([7]) is a (2m + 1)-dimensional Riemannian
manifold which has an almost contact metric structure (4,§,7, g) satis-

fying

(1.1) ¢e=0, n(@X)=0, ) =1,
(1.2) P*X =X +n(X)¢,  g(6,X) =n(X),
(1.3) 9(6X,8Y) = g(X,Y) — n(X)n(Y),
(1.4) (Vx@)Y = —n(Y)$X — g(X, ¢Y )¢,
(1.5) Vx€=X—n(X)¢

for any vector fields X and Y, where V denotes the Riemannian connec-
tion with respect to g. A typical example of Kenmotsu manifold is the
warped product L x s F', where F is a Kaehler manifold and f(t) = cet
(c is a nonzero constant) a function on a line L. In fact a Kenmotsu
structure (¢,€,n,g) on L x ¢ F is given as follows. Denote by (J, G) the
Kaehler structure of F' and let (t,z1, - ,Z2m) be a local coordinate of
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L x ¢ F where t and (21, ,Tom) are the local coordinates of L and F',
respectively. We define a Riemannian metric tensor g, a vector field £
and a 1-form 7 as follows.

(1 0
9tz) = 0 f2 (t)G(m) s

£ =d/dt, n(X)=g(X,¢).
We also define a (1, 1)-tensor field ¢ by

0 0
¢(t””)=(0 95(”))’

B(t,0) = (exp(t€)) s Jo (exp(—tE)).-

Then we can easily verify that the aggregate (¢,&,7,9) satisfies (1.1)-
(1.5) (for more details, see [7]).

We notice that Kenmotsu structure is normal but not Sasakian in
the sense of [1, 9, 11] and especially is not compact because of (1.5).
Moreover, in order that a Kenmotsu manifold has (point wise) constant
¢-holomorphic sectional curvature ¢, it is necessary and sufficient that
its curvature tensor R satisfies

where

3 oy, 2)X — g(X, )Y} + S tn(X)n(2)Y

—n(Y)n(2)X + 9(X, Z)n(Y )¢ — g(Y, Z)n(X)¢
+9(X,9Z)pY —g(Y,0Z)pX +29(X,9Y)pZ}

R(X,Y)Z =

for any vector fields X,Y, Z ([7]). In the sequel we will denote such a
manifold by M?™+1(c).

REMARK. An example of Kenmotsu manifold with constant ¢-holom
orphic sectional curvature is the warped product L x s F(k), where F (k)
denotes a Kaehler manifold with constant holomorphic sectional cur-
vature k. Moreover, if a Kenmotsu manifold is a space of constant
¢-holomorphic sectional curvature ¢, then it is a space of constant cur-
vature ¢ = —1 (for details, see [7]). As already shown in [7, 10] the
warped product L x f CE™ is a Kenmotsu manifold of constant curva-
ture ¢ = —1 whose automorphism group has the maximum dimension,
where CE™ denotes the complex Euclidean space with dim¢g = m.
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2. Fundamental properties on submanifolds of L x; F

Let M be an n-dimensional submanifold of a Kenmotsu manifold M
in which the structure vector field £ is tangent to M. Denoting by V
and V- the induced connections on M and the normal bundle T+ M of
M respectively, we have the equations of Gauss and Weingarten

(2.1) VxY = VxY + h(X,Y),
(2.2) VxN =—-AnX + V%N

for tangent vector fields X,Y and normal vector field N to M, where h
and Ay denote the second fundamental form and the shape operator in
the direction of N which are related by

(2.3) g(h(X,Y), N) = g(An X,Y).
We first notice that (1.5) and (2.3) yield
(2.4) AnE=0

for any normal vector field N to M since the structure vector field £ is
tangent to M.
For a tangent vector field X and normal vector field N to M, we put

(2.5) $X =PX +FX and ¢N =tN+t*N,

where PX and tN denote the tangential component of ¢X and ¢N,
respectively. Then we can easily see that P and ¢+ are skew-symmetric
endomorphisms acting on T, M and T;—M , respectively. If ¢ maps T, M
into T, M for each p € M and the structure vector field £ is tangent to

M, then M is said to be invariant in M. On the other side, if ¢ maps
T,M into T;-M for each point p € M and £ is tangent to M, then M is

said to be totally real (or anti-invariant) in M (cf. [11]).

If the Kenmotsu manifold M has (point wise) constant ¢-holomorphic
sectional curvature c, then the equation of Gauss for M is given by

(2.6)
g(R(X,)Y)Z,W) =

+ 2 (X )m(2)g(¥, W) — (Y In(Z)a(X, W) + 6(X, Zyn(¥ (W)

—9(Y, Z)n(X)n(W) + 9(X,¢Z)g(¢Y, W) — g(Y, ¢ Z)g(¢ X, W)
+29(X, ¢Y)g(¢Z, W)} + g(R(Y, Z), h(X,W)) — g(h(X, Z), h(Y, W))

=2 g¥, 2)9(X, W) — 9(X, Z)g(¥, W)
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for tangent vector fields X, Y, Z, W to M.

The mean curvature vector field H of M in M is defined by H =
%trace h. The Ricci tensor S and the scalar curvature p at a point
p € M are given respectively by S(X,Y) = 3.1 g(R(e;, X)Y,e;) and
p =Y ,S(eie;), where {e1,- - ,e,} is an orthonormal basis of the
tangent space T, M. For a submanifold M of M (c), by taking contracting
on (2.6) we have the following basic formula:

3(c+1)

2 2 2
7 P+ n?IlH ] = (Al

(2.7) p= (nzl){c(n—Z)—Z’m—Q}%—

where 1h|2 denotes the squared norm of the second fundamental form.

3. Ricci tensor of submanifolds in Kenmotsu manifold

In his paper [5], Chen proved that there exists a basic inequality on
Ricci tensor S for an n-dimensional submanifold M in a real space form
R™(c); namely,

n2 2
§ < ((n—Le+ I1H| g

with the equality holding if and only if either M is a totally geodesic
submanifold or n = 2 and M is a totally umbilical submanifold.

In this section we will investigate the inequality for an n-dimensional
submanifold M of M2™+1(c) whose structure vector, field £ is tangent
to M. In order to do that we need a lemma due to Chen ({2, 3, 4]).

LEmMA C. ([2, 3,4]) Let a1, -+ ,a,,d ben+1 (n > 2) real numbers

such that
n n
O a)?=r-1)>_a’+d
i=1 i=1
then 2a1a2 > d with equality holding if and only if a1+ a9 = a3 =--- =
Q.
For a submanifolds M in M 2m+1(c), we have the following.

THEOREM 3.1. Let M be a submanifold of M>™+1(c) whose struc-
ture vector field £ is tangent to M. Then the Ricci tensor S of M
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satisfies
(3.1)
2
S(X, X) Snzllfll n —37;4- 2 N 3(c+1) HPX||2 N (n —42)0

for any unit vector X € T,M. The equality holds identically if and only
if M is totally geodesic in M?™+1(c).

Proof. Let M be a submanifold of M2™+1(c) . Then it follows from

(2.7) that
(3.2)

n—1)(n—2)c (Brn+2)(n-1 3c+1 2

o tnZe GnaBn=l) Sy ppE s n2ja? -
We put
(3.3)
— _ _ n2 2
b= p— (n—1)(n—2)c N Bn+2)(n—1) 3(c+ 1) 1P| - n*||H|” '
4 4 2
Then from (3.2) and (3.3) we find
(34) n?||H||* = 2(5 + |h|*).
Assume that H # 0. Let {e1,ea,- - ,€2m11} be an orthonormal basis of
T, M such that
(1) e1,--+ , e, are tangent to M,
(2) €nt+1 = ”—g”
Putting a; = AT, i =1,-.. ,n and using (3.4), we get
3. 5)
2m+1
(> ai) _2{5+Z(a, St Y Y apr )
=1 1<i#£j<n r=n+21<i,j<n

Equation (3.5) is equivalent to
(3.6)

(Sa) =2 {5+z LY
i=1 1<i#j<n
2m—+1

DD IR CH Y aaaﬁ}’

r=n+21<4,j<n 2<a#B<n—1
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where @; = a1,83 = ag + a3z + -+ + ap_1,d3 = a,. Applying Lemma
C to (3.6) (for n = 3), we have 2G,a; > d with equality holding if and
only if @1 + as = as, where we put

2m+41
d=5e Y 0 S Y 05 Y e
1<i#£j<n r=n+21<i,57<n 2<a#B<n—1

This inequality is equivalent to

2m+-1
> mzidz Y0 S Y
1<a#B<n—1 1<i<j<n r=n+21<i,j<n
which yields, by (3.3)
(3.7)
(n=D(n-2c @Gn+2(n-1) 3(c+1) o rH|
1 1 + = P+ —5
2m+1
> p— Z aaa5+2 Z (h%+1 2 Z Z (h )2.
1<a#B<n—-1 1<i<j<n r=n+21<3,j<n
Using (2.6), we have
(3.8)
2m+1
- T w2 YWY Y 05)
1<a#0<n—1 1<i<j<n r=n+21<i,5<n
= Z R(e;,ej,€j,€;) +25(en, e,) — E aa0g
1<i#j<n—1 1<a#f<n—1
2m+1
+2 > BET+ Y D
1<i<j<n r=n+21<4,7<n
_(=1)(n=2)c 3n-1)(n-2) (c+1)(2n-4)
= 1 y 1 +2S(en, en)
c+1)(2n—4 3(c+
L Ler VO o)y Hed Dyppe XX Dy 2

4

+22 B+ Y {(h:;m +22(h:n)2 (L }

r=n-+2
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Combining (3.7) and (3.8) yields

(3.9)

1 n—1
n+1y2 T \2 | r 12 r \2
Slemen)+ 30 (2 + 3 [ SR+ 5 {00+ (O hon))]
1<i<n r=n+4+2 i=1 a=1
n?||H|? Lt 3(c+

Ao Djpe,p + 2D e - o+ 1 (en)

<

and consequently

(3.10)
2N H|2 -3n+2 3(c+1
O e i L
n— 2} n—2)(c+1
+( 4 ) _( )4( )772(6”).

Moreover, it is clear from (3.9) that the equality holds if and only if

(3.11)

n—1
hefl =0, kG, =0, > hl,=0
a=1

fori1<a<n-—1, 1<i<n n+2<r<2m+1.

Since Lemma C yields that 2a;a; = d if and only if a; + a; = as,
(3.6) also implies that the equality holds if and only if 3 0", Lpnttl =
h?*1. Since e, can be any unit tangent vector of M™, (3. 10) 1mp11es
the inequality (3.1). Now, assume that for all unit tangent vector e; the
equality sign of (3.1) holds identically. Then we have

TL+1__ . .
hiy=0 (1<4,j<nn+2<r<2m+1),

n+1l _ pnt+l
thk ’_h‘ii ’

k#i

from which together with (2.4), we conclude that M is totally geodesic.0)
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COROLLARY 3.2. Let M be a totally real submanifold of M2™+1(c).
Then the Ricci tensor S of M satisfies

n2|H|I? =3n+2 (-2 ((n-2)(c+1

for any unit vector X € T,M. The equality holds identically if and only
if M is totally geodesic in M*™%1(c).

COROLLARY 3.3. Let M be a submanifold of the warped product
L x; CE™ whose structure vector field £ is tangent to M. Then the
Ricci tensor S of M satisfies

|| |*

(3.12) S <(—n+1+

)g-

The equality holds identically if and only if M is totally geodesic in
L x f CE™.

4. Ricci curvature and squared mean curvature

Let {e1, - ,en} be an orthonormal basis of T,M. Suppose L is a
k-plane section of T, M and X a unit vector in L. We choose an or-
thonormal basis {e1,- - ,ex} of L such that e;=X. Define the Ricci
curvature Ricy, of L at X by

Ricy,(X) = Kz + K1z + -+ K,
where K;; denotes the sectional curvature of the 2-plane section spanned

by e;,e;. Such a curvature is simply called a k-Ricci curvature ([5]). The
scalar curvature 7 of the k-plane section L is given by

1<i<j<k

For each integer k, 2 < k < n, two Riemannian invariants 0y, 8; on the
n-dimensional Riemannian manifold M is defined by

|
(4.1) 0r(p) = - 1IIJI.1}£RZCL(X), peEM,
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where L runs over all k-plane sections in 7, M and X runs over all unit
vectors in L.

(4.2) O (p) =

1, .. ’
1£?)f(chL(X), pe M,

where L runs over all k-plane sections in T, M which is orthogonal to £
and X runs over all unit vectors in L.

For a submanifold M in a Riemannian manifold the relative null space
of M at p is defined by

(4.3) N, = {X € T,M|h(X,Y) =0 for all ¥ € T, M}.

Recently Chen ([5]) established a relationship between k-Ricci cur-
vature and the squared mean curvature for submanifold in a real space
form. In this section we investigate k-Ricci curvature for submanifold
of Kenmotsu manifold with constant ¢-holomorphic sectional curvature
whose structure vector field £ is tangent to the submanifold.

THEOREM 4.1. Let M be an n-dimensional submanifold of M>™+1(c)
(¢ < —1) whose structure vector field { is tangent to M. Then

(1) For each unit vector X € T,M, we have

@8 P2 (Riex) + (-1 - 2D px?
(n—2)c+1) (n-—2)c+1) ,
Sln2er ) o2t D k).

(2) If H(p) = 0, then a unit tangent vector X at p satisfies the
equality case of (4.4) if and only if X € N,,.

(3) The equality case of (4.4) holds identically for all unit tangent
vector at p if and only if p is a totally geodesic point.

Proof. (1) Let X € T, M be a unit tangent vector X at p. We choose

an orthonormal basis {e;, - ,ep} for T,M and {ep41, - ,€am41} for
T,~ M with e; = X. Then, from (2.7), we have
(4.5)

n?||H||* = p+h|* - “%Fl),lp“?_ (n=2(n -l Bn+h(n-1)

4 4
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It follows from (4.5) that

(4.6)
n?|| H||?
2m+1
=p+ Z {(R1)? + (ho2" + -+ + R, )2 + 2 Z (h:j)Q}
r=n+1 1<i<j<n
2m—+1
3(0 + 1 T
ipi-2 Y Y mag
r=n+12<i<j<n
m=2)(n—1c @Bn+2)(n-1)
- +
4 4
2m+1
_P+ E {(Ry +Rbo++ -+ ki) 4+ (hT — Ry — - — h7,,)%)
'r—'n,—i—l
2m+1 2m+1 )
+2 ) > (-2 ) Y hphy—=——||P|”
r=n+11<i<j<n r=n+12<i<j<n
n—2)(n—1)c @Bn+2)(n-—-1)
- 4 + 4 ‘

On the other hand, (2.6) implies

(4.7)

2m+1 c—3

r=n+1

- f{—l{vﬁ(en e+ 2 D gre, ge)

and consequently

(4.8)
2m+1
(=D —2)(c—3)
K = RIhT, — (T2} +
25;_<_n r—;ﬂ-l 2<§<n{ ) } 8
X Dyppp et Dype 2
4 1)(m—2)

———————{1— “(e)}-
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Taking account of (4.8) into (4.6), we get

(4.9)
) 1 2m+1
n?|H|* > p+ 5 Z (hii" + h" + ...+ A7) Z Ki;
r=n+1 2<i<j<n
n (n—l)(n;—2)(c—3) +3(c+ 1) (Pl - 3(c+ 1) 3t p, 2
3(c +1) Bet )z _ (n— 1)in - 2)c + (3n + Qi(n -1
2m+1 n
v2 Y Y- R0 e
r=n+1j=2
> o dnlHIP 2 Y Kyt 2n— 1) - 2 D ey
2<i<j<n
R )

which gives

3(c+1)
LR 22 Y Kyt 2 1) - 2 ey
2<i<ji<n

S =D g e,

or equivalently

3(c + 1)

L H|? 2Ric(X) - 1PX| +2(n — 1)
(_i_z){l (X))

(2) Assume that H(p) = 0. The equality holds in (4.4) if and only if
12=-=h,=0,
hly =hoy+---+hy,, r=n+1--,2m+1

Then h; =0, forall j =1,2,--- ,nandr =n+1,--- ,2m + 1, which
means that X € N,,. :
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(3) The equality case of (4.4) holds for all unit tangent vector at p if
and only if

hi;=0,i1#j and r=n+1,---,2m+]1,
L+ +h,—2h,=0i=1--- ,nandr=n+1,--- ,2m+1,
which implies by (2.4) that p is a totally geodesic point. O

THEOREM 4.2. Let M be an n-dimensional submanifold of M?™+1(c)
whose structure vector field € is tangent to M. Then

) (n—2)c 3(c+1) o 3n+2
4.10 H|? > - - P+ =——=.
(4.10)  I1HI" = n(n — 1) 4n dn(n —1) 1217+ 4n

Proof. Let p € M and let {e;,--- ,e,} be an orthonormal basis for
T,M. From (2.6) we have
(4.11)

3(c+1 n—2){n—-1)c Bn+2){n-—-1
4 4 4

We choose an orthonormal basis {e1, - ,en,€nt1," - €2m+1} at p such
that e, is parallel to the mean curvature vector H(p) and e1,--- ,e,

diagonalize the shape operator 4,11, then

eagz 0 O - 0

0 ao 0 - O
Appr= [0 0 @ o 0]

0 0 0 - a,

= (hi;) with traced, =0, r=n+2,---,2m+1,
which and (4.11) imply

(4.12)
2m+41

2| H]? —p+§:az T DD DR i [T

r=n+1 1<z;é3<n
(n— 2)(n -1} (Bn+2)(n-1)
B 4 * 4 '
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On the other hand

0< > (@i—a)?=(n-1) Y a’—2 Y aa,,

1<i<j<n 1<i<n 1<i<j<n

which yields

n?||H|? = (Z a;)? = zn:aiz +2 Z aa; < nZaiz,
i=1

i=1 1<i<j<n i=1

which implies 37, a;2 > n||H||”. Thus we have from(4.12)

L (c+1
RIHE > p+ Y 0 — XLy py2
=1

4
(n—2)(n—1)c (Bn+2)(n—-1)
Bl 4 * 4
> ot nf )~ 2D py?

n=2)(n—1)c (@Bn+2)(n—-1)
B 4 * 4

k)

or equivalently

11”2 ol - 4i(fn+_1{) oy - o2 Be G2

O

COROLLARY 4.3. Let M be an n(> 2)-dimensional submanifold of
M?*+1(c)(c < —1) whose structure vector fleld £ is tangent to M. Then

1
12" > —{p+IR* +n(n-1)}.

The equality holds identically if and only if either ¢ = —1 or n = 2 and
M is totally real in the ambient manifold.
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Proof. (4.11) says

1812 = s {pt - 2D pyp 22O DEED )

and consequently
1
I 2 —{p+ B + n(n— 1)}

since ¢ < —1. O

THEOREM 4.4. Let M be an n-dimensional submanifold of M?™+1(c)
whose structure vector field € is tangent to M. Then for any integer k,
2 <k < n and any point p € M we have

(n—2)c  3(c+1)
dn. 4n(n-—1)

3n+2

P2
1P+ =2

(413)  |HI*(») = x(p) -

Proof. Let {e1,--- ,en} be an orthonormal basis for T, M. Denoting

by L;, ... s, the k-plane section spanned by e;,,--- ,e;, , we have
1 ,
(4.14) T(Liy o 5) = 5 > Ric,, .., (&),
i€{i1, ik}

(18 s =—p— > rllaa).

n-2Ck—2 1<i1 < <ig<n
Combining (4.1), (4.14) and (4.15), we obtdin

n(n — 1)

2olr) > =g, )

which together with (4.10) yields (4.13). |

THEOREM 4.5. Let M be an n-dimensional submanifold of M?™+1(c)
whose structure vector field £ is tangent to M. Then for any integer k,
2 <k <n and any point p € M we have

n_—-l—kp _(n=2)c  3(ct+1)

3n—6
i (p) n 4dn(n—1)

P+ ==,
1P+ 2

(4.16) |H|(p) 2
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Proof. Let {e1, -+ ,en} be an orthonormal basis for T, M. Denoting

by Li,.... ;, the k-plane section spanned by e;,,-- ,e;, , we have
1 .
(4'17) T(Lil,“' ,ik) = -2— Z chLil:"' ik (ei)’
i€{in, - ,in}

(4.18) —;—p(p)=———1——— > m(Li i)

oCr_
n=2Yk=2 1 ¢j <<in<n

Combining (4.2), (4.17) and (4.18), we find

1 n—1 2 _
Lo 2 ~(n- 1)+ P2 )
which together with (4.10) implies (4.16). d
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