• Title/Summary/Keyword: urban-runoff

Search Result 581, Processing Time 0.019 seconds

Exploring Users' Perceptive Response and Landscape Aesthetic Value of Rain Gardens

  • Kim, Suyeon;An, Kyungjin
    • Journal of recreation and landscape
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • Recently, growing emphasis has been placed on the installation of rain gardens. However, previous rain garden studies have mainly focused on physicochemical effects such as rainfall runoff management and water quality improvement. Therefore, this study aims to investigate general perceptions of rain gardens and landscape aesthetics among rain garden visitors. To achieve this goal, a survey of 100 rain garden visitors was conducted, gathering information about their general perceptions of rain gardens and landscape aesthetics at three pre-selected rain garden locations. Results showed that rain garden recognition was limited to 34% of the respondents, indicating that most people were not aware of rain gardens and were unable to notice differences between rain gardens and traditional gardens. However, stronger support for rain gardens was observed among those who were aware of the concept, those who recognized that rain garden planting types are differentiated from traditional gardens, and those who rated positively the landscape aesthetic value of rain gardens. The main findings are expected to encourage further studies of quantitative indicators by conducting a correlation analysis between aesthetics and functionality of rain gardens.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

A study on the rainfall management target considering inter-event time definition (IETD) (무강우 지속시간(IETD)을 고려한 빗물관리 목표량 설정 방안 연구)

  • Baek, Jongseok;Kim, Jaemoon;Park, Jaerock;Lim, Kyoungmo;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.603-611
    • /
    • 2022
  • In urban areas, the impermeable area continues to increase due to urbanization, which interferes with the surface penetrating and infiltrating of rainwater, causing most rainwater runoff to the surface, deepening the distortion of water circulation. Distortion of water circulation affects not only flood disasters caused by rainfall and runoff, but also various aspects such as dry stream phenomenon, deterioration of water quality, and destruction of ecosystem balance, and the Ministry of Environment strongly recommends the use of Low Impact development (LID) techniques. In order to apply the LID technique, it is necessary to set a rainwater management target to handle the increase in outflow after the development of the target site, and the current standard sets the rainwater management target using the 10-year daily rainfall. In this study, the difference from the current standards was analyzed through statistical analysis and classification of independent rainfall ideas using inter-event time definition (IETD) in setting the target amount of rainwater management to improve water circulation. Using 30-year rainfall data from 1991 to 2020, methods such as autocorrelation coefficient (AC) analysis, variation coefficient (VC) analysis, and annual average number of rainfall event (NRE) analysis were applied, and IETD was selected according to the target rainfall period. The more samples the population had, the more IETD tended to increase. In addition, by analyzing the duration and time distribution of independent rainfall according to the IETD, a plan was proposed to calculate the standard design rainfall according to the rainwater management target amount. Therefore, it is expected that it will be possible to set an improved rainwater management target amount if sufficient samples of independent rainfall ideas are used through the selection of IETD as in this study.

Sewer overflow simulation evaluation of urban runoff model according to detailed terrain scale (상세지형스케일에 따른 도시유출모형의 관거월류 모의성능평가)

  • Tak, Yong Hun;Kim, Young Do;Kang, Boosik;Park, Mun Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.519-528
    • /
    • 2016
  • Frequently torrential rain is occurred by climate change and urbanization. Urban is formed with road, residential and underground area. Without detailed topographic flooded analysis consideration can take a result which are wrong flooded depth and flooded area. Especially, flood analysis error of population and assets in dense downtown is causing a big problem for establishments and disaster response of flood measures. It can lead to casualties and property damage. Urban flood analysis is divided into sewer flow analysis and surface inundation analysis. Accuracy is very important point of these analysis. In this study, to confirm the effects of the elevation data precision in the process of flooded analysis were studied using 10m DEM, LiDAR data and 1:1,000 digital map. Study area is Dorim-stream basin in the Darim drainage basin, Sinrim 3 drainage basin, Sinrim 4 drainage basin. Flooding simulation through 2010's heavy rain by using XP-SWMM. Result, from 10m DEM, shows wrong flood depth which is more than 1m. In particular, some of the overflow manhole is not seen occurrence. Accordingly, detailed surface data is very important factor and it should be very careful when using the 10m DEM.

The Effect of Precipitation Change to the Groundwater Recharge (강수량 변화가 지하수함양량에 미치는 영향)

  • Lee, Seung-Hyun;Bae, Sang-Keun
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • The objective of this research is to observe and to analyze how the precipitation change can affect urban area and coastal area to groundwater recharge. The variation in the precipitation data of the regional groundwater basin, which includes Busan Metropolitan City Suyeong Gu area, was to estimate the change in the groundwater recharge and to analyze the characteristic changes. Research result reflects that as the precipitation varied, there was some difference in the groundwater recharge. However, differences in the precipitation ratio and the groundwater recharge ratio were consistent. Variation in the precipitation had less impact on the groundwater recharge ratio, and the groundwater recharge ratio decreased as timeline increased. When the precipitation increased by 10 %, groundwater recharge changed by 2.23 %. Accordingly, when it decreased by 10 %, groundwater recharge changed by 2.20 %. When it increased by 20 %, groundwater recharge changed by 4.39 %, and when it decreased by 20 %, groundwater recharge changed by 4.36 %. Despite the dramatic changes in the precipitation, the changes in the groundwater recharge were minimal. From the research, we can observe that the precipitation change had a significant impact on the ratio, but it doesn't really affect the groundwater recharge. Therefore, in urban area, the changes in groundwater recharge don't conform to the changes in the precipitation, and the effect of direct runoff can increase the possible occurrence of urban flooding.

Impacts assessment of Climate change on hydrologic cycle changes in North Korea based on RCP climate change scenarios I. Development of Long-Term Runoff Model Parameter Estimation for Ungauged Basins (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 I. 미계측유역의 장기유출모형 매개변수 추정식 개발)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.28-38
    • /
    • 2019
  • Climate change on the Korean peninsula is progressing faster than the global average. For example, typhoons, extreme rainfall, heavy snow, cold, and heatwave that are occurring frequently. North Korea is particularly vulnerable to climate change-related natural disasters such as flooding and flooding due to long-term food shortages, energy shortages, and reckless deforestation and development. In addition, North Korea is classified as an unmeasured area due to political and social influences, making it difficult to obtain sufficient hydrologic data for hydrological analysis. Also, as interest in climate change has increased, studies on climate change have been actively conducted on the Korean Peninsula in various repair facilities and disaster countermeasures, but there are no cases of research on North Korea. Therefore, this study selects watershed characteristic variables that are easy to acquire in order to apply localization model to North Korea where it is difficult to obtain observed hydrologic data and estimates parameters based on meteorological and topographical characteristics of 16 dam basins in South Korea. Was calculated. In addition, as a result of reviewing the applicability of the parameter estimation equations calculated for the fifty thousand, Gangneungnamdaecheon, Namgang dam, and Yeonggang basins, the applicability of the parameter estimation equations to North Korea was very high.

The Change of Water Balance due to Urbanization in Gwangju River Basin (도시화에 수반되는 광주천 유역의 물수지 변화)

  • Yang, Hea-Kun;Kim, Jong-Il
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.1
    • /
    • pp.192-205
    • /
    • 2004
  • The purpose of this paper is to analyze the factors, which have influence upon changes of hydrological environment in time series, and evaluate water balance changes caused by urbanization. The results of the analysis and evaluation are as follow: At first, the river runoff at Gwangju River Basin keep base flow of river by storage capacity recharged in June to September and show peak in August and minimum flow in May. The groundwater recharge by urbanization accounted for 46.1% of rainfall at early-urban stage, and decreased to 36.5% and 29.9% in the 1960's and the 1990's respectively, and is likely to decrease to 27.8% in the 2010's. On the other hand, the overland flow was 9.6% of rainfall in the 1960's and 16.2% in the 1990's, and is likely to increase to 18.3% in the 2010's. When such a phenomenon is kept continuously, distorted water balance shall be worsened to create not only frequent occurrence of urban flood but also decreased base flow of Gwangju River to accelerate dry stream phenomenon. The time series study on urban redevelopment and environment maintenance describes distorted phenomenon to supply the information for nature-friendly land use, and examines relations between human activities and natural environment.

  • PDF

Estimation of Suspended Sediment Runoff for Landuse (토지이용에 따른 부유토사 유출 평가)

  • Kim, Joo-Hun;Oh, Deuk-Kun;Kim, Kyung-Tak
    • Journal of Wetlands Research
    • /
    • v.7 no.1
    • /
    • pp.119-128
    • /
    • 2005
  • Sediment yield and sediment transport in a basin bring about decrease of conveyance by the change of bed section, and have an influence on an aggravation of water quality and freshwater ecosystem. This study is to analyze the characteristics of outflow sediment according to land-use in Mushim-cheon flowing through forest area, farmland area and urban area. The upper stream of Mushim-cheon consists of forest area and farmland area. The suspended sediment is observed through 10 rainfall events in 5 sites. As a result of analyzing characteristics of landuse, the site of Bangse-gyo takes up 69% of Mushim-cheon, and farmland area(27.1%) and forest area(63.7%) take up 90.8% in Bangse-gyo. Accordingly, these two areas have the high possibility to occur sediment. The suspended sediment of this site shows the highest concentration. Transferring to the downstream and the urban, the concentration of suspended sediment gets decreased. The suspended sediment occurred in the upper stream of Mushim-cheon prior to Bangse-gyo has an influence on the downstream, and has a slight influence on the urban area. Also relational formula about suspended sediemtn and discharge is leaded. As a result of this formula, $R^{2}$ is 0.506 in the upper stream and is 0.656 in the downstream.

  • PDF

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

Analysis of Inundation Characteristics for EAP of Highway in Urban Stream - Dongbu Highway in Jungrang Stream - (도시하천도로의 EAP수립을 위한 침수특성분석 - 중랑천 동부간선도로를 중심으로 -)

  • Lee, Jong-Ta;Jeon, Won-Jun;Hur, Sung-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.69-76
    • /
    • 2006
  • An hydraulic and hydrologic analysis procedure was proposed to reduce the inundation damage of highway in urban stream, that could contribute the EAP and Traffic control planning of Dongbu highway in the Jungrang stream basin which is one of the representative urban area in Korea. We performed the HEC-HMS runoff analysis, and the UNET unsteady flow modeling to decide the inundation reaches and their characteristics. The high inundation risk areas were of Emoon railway bridge and the Wollueng bridge, which are inundated in the case of 10 year and 20 year frequency flood respectively. We also analyze the inundation characteristics under the various conditions of the accumulation rainfall and the duration. Flood elevation at the Wolgye-1 bridge exceed over Risk Flood Water Level(EL.17.84 m) when the accumulation rainfall is over 250 mm and shorter duration than 7 hr. When neglecting backwater effect from the Han river, inundation risk are highly at the reach C2(Wolgye-1 br. ${\sim}$Jungrang br., left bank), C1(Wolgye-1 br. ${\sim}$Jungrang br., right bank), D(Jungrang br. ${\sim}$Gunja br.) in order, but when consider the effect, the inundation risk are higher than the others at the reach D2(Jungrang br. ${\sim}$Gunja br., left bank) and E(Gunja br. ${\sim}$Yongbi br.), which are located downstream near confluence.