• Title/Summary/Keyword: urban vegetation

Search Result 588, Processing Time 0.025 seconds

Land Use and Greenspace Structure in Several Cities of Kangwon Province (강원도 일부 도시들의 토지이용 및 녹지구조)

  • 조현길;이기의;윤영활;서옥하
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.4
    • /
    • pp.171-183
    • /
    • 1998
  • The purpose of this study was to analyze urban greenspace area and vegetation structure by land use types for both Chuncheon and Kangleung. Natural and agricultural lands were predominant in the study cites, as 75-80% of total area. Residential lands accounted for about 10%, and commercial and industrial lands(including transportation), 5-10%. Only 10-20% of urban residential and commercial area was covered with greenspace. Woody plant cover was 12-13%, and tree density was 1.5 trees/100$m^2$ for urban lands(all land use types except natural land) in both cities. The tree-age structure was largely characterized by young, growing tree population, and species diversity within a diameter class decreases as the diameter classes get larger. Urban lands of both cities had quite a similar species composition of woody plants (similarity index of 0.65). Street trees in Chuncheon were intensively pruned annually to protect the above ground utility lines. Some strategies were explored to solve problems found in the existing greenspace structures. They included increase of biomass and greenspace area through minimization of unnecessary impervious surfaces, creation of multilayered and multiaged vegetation structures, relocation of above ground utility lines and avoidance of intensive tree pruning, and establishment of greenspace proximity and connectivity.

  • PDF

Life cycle greenhouse-gas emissions from urban area with low impact development (LID)

  • Kim, Dongwook;Park, Taehyung;Hyun, Kyounghak;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • In this study, a comprehensive model developed to estimate greenhouse gas (GHG) emissions from urban area with low impact development (LID) and its integrated management practices (IMPs). The model was applied to the actual urban area in Asan Tangjeong district (ATD) as a case study. A rainwater tank (1200 ton) among various LID IMPs generated the highest amount of GHG emissions ($3.77{\times}10^5kgCO_2eq$) and led to the utmost reducing effect ($1.49{\times}10^3kgCO_2eq/year$). In the urban area with LID IMPs, annually $1.95{\times}104kgCO_2eq$ of avoided GHG emissions were generated by a reducing effect (e.g., tap water substitution and vegetation $CO_2$ absorption) for a payback period of 162 years. A sensitivity analysis was carried out to quantitatively evaluate the significance of the factors on the overall GHG emissions in ATD, and suggested to plant alternative vegetation on LID IMPs.

Satellite-based Assessment of Ecosystem Services Considering Social Demand for Reduction of Fine Particulate Matter in Seoul

  • Lim, Chul-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.421-434
    • /
    • 2022
  • Fine particulate matter (PM2.5) has been the biggest environmental problem in Korea since the 2010s. The present study considers the value of urban forests and green infrastructure as an ecosystem service (ES) concept for PM2.5 reduction based on satellite and spatial data, with a focus on Seoul, Korea A method for the spatial ES assessment that considers social demand variables such as population and land price is suggested. First, an ES assessment based on natural environment information confirms that, while the vitality of vegetation is relatively low, the ES is high in the city center and residential areas, where the concentration of PM2.5 is high. Then, the ES assessment considering social demand (i.e., the ESS) confirms the existence of higher PM2.5 values in residential areas with high population density, and in main downtown areas. This is because the ESS of urban green infrastructure is high in areas with high land prices, high population density, and above-average PM2.5 concentrations. Further, when a future green infrastructure improvement scenario that considers the urban forest management plan is applied, the area of very high ESS is increased by 74% when the vegetation greenness of the green infrastructure in the residential area is increased by only 20%. This result suggests that green infrastructure and urban forests in the residential area should be continuously expanded and managed in order to maximize the PM2.5 reduction ES.

Inventory Development according to Aquatic Environment Fitness and Classification Characteristics of Plants for Urban Water Space (수환경 적응도에 따른 식물 목록 구축 및 도시 수 공간에 적용 가능한 식물 분류특성)

  • Li, Lan;Kwon, Hyo Jin;Kim, Hyeong Guk;Park, Mi Ok;Koo, Bonhak;Choi, Il Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.93-104
    • /
    • 2013
  • The purpose of this study was to develop a list of plants that adapted to the aquatic environment in urban areas based on the list of plants surveyed through literature review and field surveys, and to classify the types of vegetation according to the five categories of plant distributions set by the U.S. Fish and Wildlife Service (1988) in the aspect of the adaptability of plants to the aquatic environment. Results of the classification by category according to the adaptability to the aquatic environment for the plant species surveyed through literature review and field surveys showed that there are 45 species of OBL, 96 species of FACW, 66 species of FAC, and 94 species of FACU, totaling 650 species. In addition, a total of 50 species excluding exotic species, endangered species, and naturally introduced plants are proposed as appropriate plants for the urban aquatic environment that will be artificially constructed. The results of the study can be utilized as the basic information for maintaining diversity and stability of the ecosystem during the restoration of water ecology; they can serve as useful data for the development of an optimum vegetation model when planting in water spaces in the future and preparing proper planting plans for each space. In addition, it is believed that the information will be useful in wetland identification and evaluation by observing plant species that appear only in wetlands.

Analyses of Residents Satisfaction with the Differences in Green Space Infrastructure for Three Cities, Gwacheon, Uiwang, and Hanam (도시 공원녹지 환경의 차이에 따른 주민 만족도 변화 분석 -과천·의왕·하남시를 사례로-)

  • Park, Eun-Jin;Sung, Hyun-Chan;Seo, Jung-Young;Kang, Kyu-Yi;Sung, Mi-Sung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.3
    • /
    • pp.60-70
    • /
    • 2007
  • Green space infrastructures for three cities, Gwacheon, Uiwang, and Hanam, were analyzed in terms of the area of urban parks per capita, the percentage of green space area, the area of green space per capita, and the percentage of vegetation cover in residential area, etc., which are commonly used as criteria for urban green space planning. The differences in green space infrastructure among these three cities were compared to the satisfaction level of residents for their green space. The area of parks per capita corresponded to the satisfaction level when Seoul Great Park in Gwacheon and Misa Park in Hanam were not included. Although these two huge parks accounted more than 90% of the area of urban parks in Gwacheon and Hanam, they serve more people from outside the cities and not likely visited by residents due to lacking of daily accessibility. The percentage of vegetation cover in residential area were considered to affect the satisfaction of residents for green space, whereas the total area of green space or the percentage of green space area in the cities was not related to the satisfaction level. It suggests that the distributions and accessibilities of green space and park service are more important for satisfaction than total green space area indicating urban sustainability.

An Ecological Corridor Plan in an Urban Neighborhood Park - A Case Study of Noryangjin Neighborhood Park in Dongjak-gu, Seoul - (도심지역 산지형 근린공원내 도로에 의한 단절지역 생물이동통로 조성계획 연구 - 동작구 노량진근린공원을 대상으로 -)

  • Han Bong-Ho;Kim Jeong-Ho;Kim Jong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.2 s.109
    • /
    • pp.16-31
    • /
    • 2005
  • This study was carried out to design a bridge-type ecological corridor plan in a forested neighborhood park affected by road construction in Dongjak-gu, Seoul. In order to study the site conditions, we analyzed topography, ecosystem structure, and user behavior and trail use. Existing vegetation was classified into 12 types. Based on a vegetation analysis, the Populus albaglandulosa and Robinia pseudoacacia communities, where planted species are dominant, were distributed extensively in the southern forest area. Planted areas with a single-layer structure of Korean landscape woody plants and Robinia pseudoacacia communities with a single-layer structure were distributed extensively in the northern forest and water-supply area. Based on a study of 28 quadrats, the similarity index between the multi-layer plant communities distributed in the southern forest and the single-layer planted areas was low. Twenty-four species of wild birds(355 individuals) were found in the survey area, including nine interior species and three urban species. The study of user behavior and numbers showed most users were walkers and few users were observed in the southern forest while most users were observed in the northern forest and water supply area. We selected some wild birds as model species to represent migrating species believed to use this park as an ecological corridor during migration. We suggested the new park plan include the following: improvement of vegetation structure for wildbird migration and habitat, connection of park trails for users and presentation of a landscape linked to nature.

Impacts of Three-dimensional Land Cover on Urban Air Temperatures (도시기온에 작용하는 입체적 토지피복의 영향)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The purpose of this study is to analyze the impacts of three-dimensional land cover on changing urban air temperatures and to explore some strategies of urban landscaping towards mitigation of heat build-up. This study located study spaces within a diameter of 300m around 24 Automatic Weather Stations(AWS) in Seoul, and collected data of diverse variables which could affect summer energy budgets and air temperatures. The study also selected reflecting study objectives 6 smaller-scale spaces with a diameter of 30m in Chuncheon, and measured summer air temperatures and three-dimensional land cover to compare their relationships with results from Seoul's AWS. Linear regression models derived from data of Seoul's AWS revealed that vegetation volume, greenspace area, building volume, building area, population density, and pavement area contributed to a statistically significant change in summer air temperatures. Of these variables, vegetation and building volume indicated the highest accountability for total variability of changes in the air temperatures. Multiple regression models derived from combinations of the significant variables also showed that both vegetation and building volume generated a model with the best fitness. Based on this multiple regression model, a 10% increase of vegetation volume decreased the air temperatures by approximately 0.14%, while a 10% increase of building volume raised them by 0.26%. Relationships between Chuncheon's summer air temperatures and land cover distribution for the smaller-scale spaces also disclosed that the air temperatures were negatively correlated to vegetation volume and greenspace area, while they were positively correlated to hardscape area. Similarly to the case of Seoul's AWS, the air temperatures for the smaller-scale spaces decreased by 0.32% ($0.08^{\circ}C$) as vegetation volume increased by 10%, based on the most appropriate linear model. Thus, urban landscaping for the reduction of summer air temperatures requires strategies to improve vegetation volume and simultaneously to decrease building volume. For Seoul's AWS, the impact of building volume on changing the air temperatures was about 2 times greater than that of vegetation volume. Wall and rooftop greening for shading and evapotranspiration is suggested to control atmospheric heating by three-dimensional building surfaces, enlarging vegetation volume through multilayered plantings on soil surfaces.

A Study on the Development of Techniques for Urban Forest Restoration and Management - Focus on the Restoration of Origin Vegetation and Improvement of Biodiversity - (도시림 복원 및 관리 기술의 개발에 관한 연구 - 원식생 복원과 생물다양성 증진을 중심으로 -)

  • Kim, Kwi-Gon;Cho, Dong-GiI;Kim, Nam-Choon;Min, Byung-Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.27-37
    • /
    • 2000
  • This study aims at restoring urban forest destructed and eliminated by industrialization, urbanization, and city development and presenting a direction to manage remaining urban forest ecologically. To this end, an experiment zone where Populus tomentiglandulosa T. Lee were selective cutted and a control zone where Populus tomentiglandulosa T. Lee were kept intact were created in Chongdam Park located in Kangnam-ku, Seoul. Then, the structural changes of herbaceous plant species, the growth of targeted woody plants, and the increase of the number of insect and bird species were examined. The conclusions reached in this study are as follows. First, for the sake of ecological restoration and management of urban forest, it is good to selective cutting. Although timing, frequency, and methods may vary depending on the features and types of urban forest, the study revealed that selective cutting contributes to the restoration speed of origin vegetation and the enhancement of biodiversity including plants and insects. Second, as for the correlations of selective cutting and the appearance of plant species, the growth of origin vegetation, and insect distribution, the study showed that the impact of meteorological environment such as brightness is much greater than that of soil environment. Third, in order to manage urban forest, tramping pressure needs to be controlled efficiently. The efficient control of tramping pressure would contribute in the appearance of herbaceous plants. It would also be beneficial in promoting biodiversity of birds by removing the impact of people using routes. Fourth, in order to enhance the overall biodiversity of urban forest, diverse environment needs to be provided. In particular, it is necessary to supply water that is insufficient in urban forest. Providing habitats such as forest wetland performs an important function to amphibians and birds that require water as well as the appearance of aquatic plants and insects. Therefore, ways to introduce water efficiently should be initiated.

  • PDF

Analyzing Difference of Urban Forest Edge Vegetation Condition by Land Cover Types Using Spatio-temporal Data Fusion Method (시공간 위성영상 융합기법을 활용한 도시 산림 임연부 인접 토지피복 유형별 식생 활력도 차이 분석)

  • Sung, Woong Gi;Lee, Dong Kun;Jin, Yihua
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.279-290
    • /
    • 2018
  • The importance of monitoring and assessing the status of urban forests in the aspect of urban forest management is emerging as urban forest edges increase due to urbanization and human impacts. The purpose of this study was to investigate the status of vegetation condition of urban forest edge that is affected by different land cover types using $NDVI_{max}$ images derived from FSDAF (Flexible Spatio-temporal DAta Fusion). Among 4 land cover types,roads had the greatest effect on the forest edge, especially up to 30m, and it was found to affect up to 90m in Seoul urban forest. It was also found that $NDVI_{max}$ increased with distance away from the forest edge. The results of this study are expected to be useful for assessing the effects of land cover types and land cover change on forest edges in terms of urban forest monitoring and urban forest management.

Detection of Small Green Space in an Urban Area Using Airborne Hyperspectral Imagery and Spectral Angle Mapper (분광각매퍼 기법을 적용한 항공기 탑재 초분광영상의 소규모 녹지공간 탐지)

  • Kim, Tae-Woo;Choi, Don-Jeong;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.88-100
    • /
    • 2013
  • Urban green space is one of most important aspects of urban infrastructure for improving the quality of life of city dwellers as it reduces the heat island effect and is used for recreation and relaxation. However, no systematic management of urban green space has been introduced in Korea as past practices focused on efficient development. A way to calculate the amount of green space needed to complement an urban area must be developed to preserve urban green space and to determine 'regulations determining the total amount of greenery'. In recent years, various studies have quantified urban green space and infrastructure using remotely sensed data. However, it is difficult to detect a myriad small green spaces in a city effectively when considering the spatial resolution of the data used in existing research. In this paper, we quantified small urban green spaces using CASI-1500 hyperspectral imagery. We calculated MCARI, a vegetation index for hyperspectral imagery, to evaluate the greenness of small green spaces. In addition, we applied image-classification methods, including the ISODATA algorithm and Spectral Angle Mapper, to detect small green spaces using supervised and unsupervised classifications. This could be used to categorize land-cover into four classes: unclassified, impervious, suspected green, and vegetation green.