• Title/Summary/Keyword: urban stormwater

Search Result 170, Processing Time 0.03 seconds

The Watershed Imperviousness Impact for the characteristic of stormwater runoff (유역의 불투수성에 따른 강우유출특성 비교)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Huh, Beom-Nyung;Choi, Ji-Yong;Kim, Yeong-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • The purpose of this study is to understand imperviousness impact for the characteristics of stormwater runoff and water temperature. The land-use map was used to estimate the watershed imperviousness(percent of impermeable area) and the RMS(Remote Monitoring System) was used to evaluate the stormwater runoff of watershed. This study was investigated for two streams(Jiam and Gongji) in Chunchon City. The detailed results of these studies are as follows; The imperviousness(%) of two watersheds(Jiam and Gongji) estimated by spatial analysis which is main function of GIS were 0.24% and 24.16%. So, Gongji watershed as urban area was about 100 times than jiam watershed as forest area. In case of rainfall of low intensity, stormwater runoff flowrate in higher imperviousness area(Gongji) was more than it in forest area(jiam). Also, The time to peak flowrate(Tp) was short in Gongji stream and the water temperature difference between Gongji and Jiam stream was about $4.4^{\circ}C$ in summer.

Effects of porous pavement on runoff reduction in Boguang subcatchment (투수성 포장도로 도입을 통한 보광배수유역 유출량 저감효과 검토)

  • Jung, Jiyun;Lee, Gunyoung;Ryu, Jaena;Ohe, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.251-259
    • /
    • 2013
  • Among various Green Infrastructure measures for urban stormwater management, effects of porous pavement were quantitatively examined in terms of hydrological cycle. Different scenarios for porous pavement were introduced on a SWMM model and the effects were compared and analysed using discharge hydrographs. Two types of pavements having different runoff coefficients (0.05 & 0.5) were introduced to cover different ratio of entire road areas (100 %, 77.5 % and 40.4 %) and these made up in total 6 different scenarios. Total runoff volume was reduced and peak flow was significantly decreased by applying the porous pavement. The highest reduction for total runoff was shown from S-6(covering area: 100 %, runoff coefficient: 0.05) as 19 % followed by S-5(covering area: 77.5 %, runoff coefficient: 0.05, 16 %), while that of S-2(covering area: 40.4 %, runoff coefficient: 0.05) and S-1(covering area: 40.4 %, runoff coefficient: 0.5) were the lowest with 8 % and 5 %. This proved that the application of porous pavement would improve urban hydrological cycle.

Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface (지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정)

  • Choi, Daegyu;Kim, Jin Kwan;Lee, Jae Kwan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

Effectiveness of Continuous Deflective Separation System to Control Nonpoint Source Pollution from Urban Areas (도시지역 비점오염원 관리를 위한 와류필터형 처리시설의 효율성 연구)

  • Park, Jong-Sik;Koh, Jeung-Hyun;Kim, Sang Keun;Chung, Ha-Ik
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.6
    • /
    • pp.88-98
    • /
    • 2007
  • The control of nonpoint source pollution from the urban paved areas with high imperviousness in is required to improve the water quality of aquatic resources. This research investigated the characteristics of urban runoffs and evaluate the effectiveness of the continuous deflective separation systems for stormwater best management practice. The systems were installed in the vicinity of a high-level road, an apartment complex, and the Cheonggye stream. Stormwater runoff was sampled in these sites. Biochemical oxygen demand ($BOD_5$), total suspended solid (TSS), total nitrogen (T-N), and total phosphorus (T-P) were analyzed. The removal efficiency of $BOD_5$, TSS, and T-P for the road was 10.9-81.0%, 11.7-93.4%, 0-37.5%, respectively. That of $BOD_5$, TSS, T-N, and T-P for the complex was 12.5-65.8%, 26.5-77.6%, 1.8-28.7%, and 20.0-37.5%, respectively. The abatement efficiency $BOD_5$, TSS, T-N, and T-P for the stream was 7.2-85.2%, 41.7-98.2%, 11.3-65.6%, and 2.0-71.5%, respectively. This study shows that the systems can be used to remove $BOD_5$ and TSS from urban runoffs efficiently.

Intra-event variability of bacterial composition in stormwater runoff from mixed land use and land cover catchment

  • Paule-Mercado, Ma. Cristina A.;Salim, Imran;Lee, Bum-Yeon;Lee, Chang-Hee;Jahng, Deokjin
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • Microbial community and composition in stormwater runoff from mixed land use land cover (LULC) catchment with ongoing land development was diverse across the hydrological stage due different environmental parameters (hydrometeorological and physicochemical) and source of runoff. However, limited studies have been made for bacterial composition in this catchment. Therefore, this study aims to: (1) quantify the concentration of fecal indicator bacteria (FIB), stormwater quality and bacterial composition and structure according to hydrological stage; and (2) determine their correlation to environmental parameters. The 454 pyrosequencing was used to determine the bacterial community and composition; while Pearson's correlation was used to determine the correlation among parameters-FIB, stormwater quality, bacterial composition and structure-to environmental parameters. Results demonstrated that the initial and peak runoff has the highest concentration of FIB, stormwater quality and bacterial composition and structure. Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were dominant bacteria identified in this catchment. Furthermore, the 20 most abundant genera were correlated with runoff duration, average rainfall intensity, runoff volume, runoff flow, temperature, pH, organic matter, nutrients, TSS and turbidity. An increase of FIB and stormwater quality concentration, diversity and richness of bacterial composition and structure in this study was possibly due to leakage from septic tanks, cesspools and latrines; feces of domestic and wild animals; and runoff from forest, destroyed septic system in land development site and urban LULC. Overall, this study will provide an evidence of hydrological stage impacts on the runoff microbiome environment and public health perspective.

Sewerage rehabilitation strategy based on sewer capacity evaluation (하수관거 통수능 검토를 통한 관거 개선방안 연구)

  • Ryu, Jaena;Oh, Jeill;Oh, Sukho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2009
  • Sewers are important national infrastructure and play an essential part by handling both wastewater and stormwater to minimise problems caused to human life and the environment. However, they can cause urban flooding when rainfall exceeds the system capacity. Sewer flooding is an unwelcome and increasingly frequent problem in many urban areas, and its frequency will increase over time with urbanisation and climate change. Under current standards, sewers are designed to drain stormwater generated by up to 10 year return period storms, but data suggests that many in practice have been experienced flooding with exceeding system capacity under increased storm events. A large number of studies has considered upgrading or increasing the design standard but there are still lack of information to propose a suitable return period with the corresponding system quantity to achieve. A methodology is required to suggest a proper level of standard within a suitable sewerage rehabilitation planning that can avoid the exceedance problem. This study aimed to develop a methodology to support effective sewer rehabilitation that could prevent urban flooding mainly resulted from the exceedance of existing storm sewer system capacity. Selected sewerage rehabilitation methods were examined under different storm return periods and compared to achieve the best value for money.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Distribution of Epilithic Diatom Assemblages in an Urban Stream in Busan: Effected of Urban Climatic Conditions (도시 기후 변화가 도시하천의 부착규조류 군집에 미치는 영향)

  • Lee, Youjung;Kim, Kyungsun;Cho, Jeonggoo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.143-151
    • /
    • 2017
  • This study illustrates changes in the epilithic diatom assemblages in response to urban climatic conditions. We further assess the impact of abnormal urban climate to the urban stream environment. Epilithic diatoms, water chemical and physical variables were sampled every quarter, and assessed at 3 Oncheon stream sites, for a period of two years(from 2013~2014). The variation of physiochemical properties such as BOD, COD, T-N and T-P, show that the water quality was strongly influenced with long periods of drought and flood disturbance. Epilithic diatom assemblages were separated along the stream sites; however, the physical disturbance from urban drought and stormwater changed the composition of diatom assemblages instead of decreasing the taxonomic richness. Thus, our results suggest that epilithic diatom assemblages are altered in response to urban climatic changes, resulting in variations of stream conditions. Hence, strategies of climate change adaptation are required when considering urban stream environments.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.