• 제목/요약/키워드: urban soil

검색결과 952건 처리시간 0.027초

지형, 토양 및 임상정보에 기초한 도시림 관리시스템 개발 (Development of an urban forest management system based on information of topography, soil and forest type)

  • 이우균;손요환;송철철;정기현;김윤경;류성렬;김현섭
    • 환경영향평가
    • /
    • 제8권3호
    • /
    • pp.61-76
    • /
    • 1999
  • For the effective management of urban forest, a variety of informations on urban forest needs to be accurately measured and effectively used in decision-making processes. This study aims at developing an urban forest management system with reference to GIS and making it possible to effectively manage urban forests. A detailed forest type map were constructed with the help of aerial photograph and terrestrial inventory. A geographical map in terms of slope, aspect and altitude were also prepared by Digital Elevation Model(DEM). A soil type map containing chemical characteristics were also made through soil analysis. These thematic maps which contain informations on forest type, geography and soil were digitalized with reference to GIS, and an urban forest management system of user interface were developed. With the help of this urban forest management system, various spatial and attribute informations which need for urban forest management could be easily used in decision-making processes in relation to urban forest.

  • PDF

친환경적 보행도로 조성을 위한 저영향개발 침투화분에 관한 기초연구 (A Study on the Low Impact Development Infiltration Treebox for Environment Friendiy pedestrian)

  • 염성진
    • 한국환경과학회지
    • /
    • 제24권9호
    • /
    • pp.1211-1220
    • /
    • 2015
  • Soil is the most important factor in natural environment for bio-diversity. Urbanization and development of city devastate urban soil by the fraternization of green network and run off pollution. In these facts, preservation of soil is the main issue in maintain of quality urban environment. In order to handle this issue, the gold network that link fragment soil patches is considered in maintain quality soil. This study researched the infiltration Treebox design technique based on the Low Impact Development. This technique suggest reduction of impervious area of the soil due to urbanization. The main concept of this study is encourage more permeable surfaces in urban area by using a infiltration planter. The function of the planter is hold run off as much as possible from intensive rainfall, and utilizes it in drought season. Also, this planter provides fertile soil for organism habitat by keeping appropriate moisture supplying.

대전시 도시숲의 식생 및 토양특성에 관한 연구 (A Study of Vegetation and Soil Characteristic of Urban Forest in Daejeon City)

  • 김동일;박관수;김길남;김현숙;이항구;박범환;이상진;강길남
    • 한국환경복원기술학회지
    • /
    • 제14권2호
    • /
    • pp.11-20
    • /
    • 2011
  • This study was conducted to suggest appropriate methods for management of urban forest after investigating the present condition and problems of urban forests by analyzing vegetation and soil properties in urban forests in the Daejeon. On the basis of our research, Pinus rigida dominate Gyejoksan and Bomunsan. Pinus densiflora dominate Wolpyeong park and Quercus acutissima dominate Namsun park. On the basis of our result of analysis of soil chemical properties, all investigated areas have low pHs, available phosphates and exchangeable cations. They indicate that the soil of those areas have been acidifying progressively. Soil hardness measurements were conducted to know the conditions of trampled soils and the results of them show that soil hardness in Namsun park was higher than the others. This indicates that human interference affect the health of the urban forest.

진주시 도시공원의 토양 탄소저장량과 토양성질의 관계 (Relationships between Soil Carbon Storage and Soil Properties of Urban Parks in Jinju-si, Gyeongsangnam-do)

  • 안소은;이정민;김춘식
    • 한국농림기상학회지
    • /
    • 제24권2호
    • /
    • pp.115-123
    • /
    • 2022
  • 도시 공원지역의 토양 탄소저장량을 평가하기 위해 경상남도 진주시 하대공원(1977년 조성), 송림공원(1990년 조성), 평거공원(1992년 조성), 초전공원(2005년 조성) 등을 대상으로 0~30cm 깊이의 토양 성질 및 토양 탄소 저장량을 조사하였다. 토양 용적밀도는 공원 간 차이가 없었으나 석력함량, 토양 pH, 토양 전기전도도 등은 가장 최근에 조성된 초전공원이 가장 높은 값을 보였다. 토양 탄소 농도는 조사한 모든 깊이에서 조성연도가 가장 오래되고 미사함량이 높았던 하대공원이 평거공원에 비해 높은 농도를 보였다. 토양 0~30cm 깊이의 평균 탄소 농도는 하대공원 1.04%, 초전공원 0.87%, 송림공원 0.75%, 평거공원 0.57%이었다. 토양 탄소저장량은 0~10cm 깊이의 경우 공원 간 차이가 없었으나, 10~20cm와 20~30cm 깊이는 하대공원이 타 공원에 비해 높은 저장량을 보였다. 총 탄소저장량은 하대공원이 28,425 kg C ha-1으로 송림공원의 20,561 kg C ha-1이나 평거공원 15,622 kg C ha-1에 비해 높았다. 평균 토양 탄소 농도 및 탄소 저장량은 미사함량과 정의 상관을 모래함량과는 부의 상관을 보였다. 본 연구 결과에 따르면 진주시의 공원지역의 탄소저장량의 증가는 조성연도나 토양 내 미사함량과 관련이 있을 가능성을 시사한다.

소일-시멘트 시공 시 인접 석축 성벽 문화재에 발생한 진동 및 변위 평가 (Evaluation of Vibrations and Displacements of an Old Masonry Wall Induced by Soil-Cement Construction)

  • 김영석;주진현;조용상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.957-962
    • /
    • 2010
  • Foundation systems in urban sites are often necessary to be constructed with little vibrations and displacements to surroundings. In order to assess applicability of a new foundation system for urban sites based on soil-cement mixing technique, vibrations and displacements induced by soil-cement construction process is evaluated. Soil-cement columns were constructed to reinforce soft ground near an old masonry wall in an urban redevelopment site, and the vibrations and displacements of the old masonry wall during construction were measured. Results indicate that the vibrations and displacements induced by soil-cement construction were little and not critical to the stability of the masonry wall.

  • PDF

서울 남산도시자연공원의 비오톱 구조 및 생태적 관리방안 (Ecological Management Plan and Biotope Structure of Namsan Urban Natural Park in Seoul)

  • 이경재;한봉호;이수동
    • 한국조경학회지
    • /
    • 제32권5호
    • /
    • pp.102-118
    • /
    • 2004
  • The purpose of this study was to propose an ecological management plan by the comprehensive analysis of biotope structures on Namsan Urban Natural Park in Seoul. Classified by actual vegetation, structure of layer and vegetation damage, biotope structures were composed of forest area, compact management area, herb area, cultivated area and non-ecology(urban) area. Succession had seened to stop in the Native forest. Artifical forest was divided into two types. The first, upper layer, was too dense to accommodate lower layer plants, the other case was the appearance of Quercus spp. and the first stage plants of succession following the declination of the upper layer plants. The soil pH of Nam-san Urban Park was 4.21∼4.51, which meant the soil was becoming acid. As the result of acidity, leaching of available nutrition(K/sup +/, NH₄/sup +/, Ca/sup ++/ etc.) was immediately influenced by the natural ecosystem, influence of acid rain was disturbed to becoming organic matter which was use to plants. In the case of a biotope structure management plan, the urban area was prohibited to spread outside. Cultivated and herb area was regenerated to natural forest. In the forest area, the compact management area was maintained with its present condition, and then it is desirable to make a preservation area and to plant shrubs. Planted Pinus densiflora Community was needed to eliminate competitive species of canopy layer, and plant shrubs. Management of deciduous broad-leaved Comm. was maintained in its present conditionand it is desirable to raise the diversity of the understory and shrub layer. The management of the artifical forest seems to be suitable for Q. spp. community. The care of naturalized plants prevents the expansion and restores the structure of wild plants. The soil management was a marked restoration soil ecosystem in order to prevent soil acid and drying.

Restoration planning of the Seoul Metropolitan area, Korea toward eco-city

  • Lee, Chang Seok
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2003년도 학술대회
    • /
    • pp.1-5
    • /
    • 2003
  • In order to prepare a basis for ecological restoration of the Seoul Metropolitan area, ecological diagnoses on soil physico-chemical properties and vegetation structure were carried out. Land use patterns, actual vegetation, and biotope patterns were also investigated based on aerial photograph interpretation and field checks. I formulated landscape elements overlaying those data and evaluated the ecological value of each element. Soil pollution was evaluated by analyzing soil samples collected in each grid on the mesh map, divided by 2km $\times$ 2km intervals. Soil samples were collected in forests or grasslands escaped from direct human interference. Soil pollution evaluated from pH, and SO$_4$, Ca, Mg, and Al contents of soil was more severe in the urban outskirts than in the urban center. Those soil environmental factors showed significant correlation with each other. Vegetation in the urban area was different in species composition from that in suburban areas and showed lower diversity compared with that in the suburban areas. Successional process investigated by population structure of major species also showed a difference. That is, successional trend was normal in suburban areas, but that in urban areas showed a retrogressive pattern. The landscape ecological map of Seoul indicates that the urban center lacks vegetation and greenery space is restricted in urban outskirts. Such an uneven distribution of vegetation has caused a specific urban climate and thereby contributed to aggravation of air and soil pollution, furthermore causing vegetation decline. From this result, it was estimated that such uneven distribution of vegetation functioned as a trigger factor to deteriorate the urban environment. I suggested, therefore, a restoration plan based on landscape ecological principles, which emphasizes connectivity and even distribution of green areas throughout the whole area of the Seoul to solve this complex environmental problem. In this restoration plan, first of all, I decided the priority order for connection of the fragmented greenery spaces based on the distances from the core reserves comprised of green belt and rivers, which play roles as habitats of wildlife as well as for improvement of urban environment. Next, I prepared methods to restore each landscape element included in the paths of green network to be constructed in the future on the bases of such preferential order. Rivers and roads, which hold good connectivity, were chosen as elements to play important roles in constructing green network by linking the fragmented greenery spaces.

  • PDF