• Title/Summary/Keyword: urban scenario

Search Result 281, Processing Time 0.025 seconds

Prediction of present and future distribution of the Schlegel's Japanese gecko (Gekko japonicus) using MaxEnt modeling

  • Kim, Dae-In;Park, Il-Kook;Bae, So-Yeon;Fong, Jonathan J.;Zhang, Yong-Pu;Li, Shu-Ran;Ota, Hidetoshi;Kim, Jong-Sun;Park, Daesik
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • Background: Understanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation. Although Schlegel's Japanese gecko (Gekko japonicus) is widely distributed in Northeast Asia, its distribution has not been studied in detail. We predicted the present and future distribution of G. japonicus across China, Japan, and Korea based on 19 climatic and 5 environmental variables using the maximum entropy (MaxEnt) species distribution model. Results: Present time major suitable habitats for G. japonicus, having greater than 0.55 probability of presence (threshold based on the average predicted probability of the presence records), are located at coastal and inland cities of China; western, southern, and northern coasts of Kyushu and Honshu in Japan; and southern coastal cities of Korea. Japan contained 69.3% of the suitable habitats, followed by China (27.1%) and Korea (4.2%). Temperature seasonality (66.5% of permutation importance) was the most important predictor of the distribution. Future distributions according to two climate change scenarios predicted that by 2070, and overall suitable habitats would decrease compared to the present habitats by 18.4% (scenario RCP 4.5) and 10.4% (scenario RCP 8.5). In contrast to these overall trends, range expansions are expected in inland areas of China and southern parts of Korea. Conclusions: Suitable habitats predicted for G. japonicus are currently located in coastal cities of Japan, China, and Korea, as well as in isolated patches of inland China. Due to climate change, suitable habitats are expected to shrink along coastlines, particularly at the coastal-edge of climate change zones. Overall, our results provide essential distribution range information for future ecological studies of G. japonicus across its distribution range.

Development of System Requirement Management Database System from User-centered Scenario (사용자 편의를 고려한 시스템 요구사항 관리 데이터베이스 구축)

  • Jin, Moon-Sub;Park, Chan-Young;Choi, Chunho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • In this paper, a new system requirement management tool and its application on the Urban Transit Maglev Project were introduced. In most R&D projects on complexity system such as transportation system, Systems Engineering(SE) activities are included on each project, and SE teams are using commercial computer-based tools to perform the SE activities. Even though SE tools help to manage huge data and documents on engineering efficiently, but well-designed functions of SE tools which support SE activities are not sufficiently used on the whole process of system engineering. In order to computer-based SE tools are to be effectively used on project management, most engineers who takes engineering and coordination roles, at least sub-project managers should be familiar to the tool and could be easily use it, but usability of commercial SE tools are very difficult for normal engineers with no experience on SE activities and SE tools. To overcome this difficulty, we developed a new system requirement management tool considering each user's scenario on using engineering tools. The developed tool could not cover whole SE processes, but designed to perform requirement engineering such as system requirements(SRs) management, specification management, traceability management, SRs' verification activity management and so on. All the entities on SR database are inter-connected by pre-recognized traceabilities, so even non-specialists on SE can easily browse the database and find entities concern, and linked information such as interacted entities, legal or engineering constraints, coordination documents, status of development and verification and so on. Also functions for SR verification tools, TPM(Technical Performance Measure) tools, DB searching tools with traceability, and report generation tools are included on the system.

Scenario-based Flood Disaster Simulation of the Rim Collapse of the Cheon-ji Caldera Lake, Mt. Baekdusan (시나리오에 따른 백두산 천지의 외륜산 붕괴에 의한 홍수재해 모의)

  • Lee, Khil-Ha;Kim, Sang-Hyun;Choi, Eun-Kyeong;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2014
  • Volcanic eruptions alone may lead to serious natural disasters, but the associated release of water from a caldera lake may be equally damaging. There is both historical and geological evidence of the past eruptions of Mt. Baekdusan, and the volcano, which has not erupted for over 100 years, has recently shown signs of reawakening. Action is required if we are to limit the social, political, cultural, and economic damage of any future eruption. This study aims to identify the area that would be inundated following a volcanic flood from the Cheon-Ji caldera lake that lies within Mt. Baekdusan. A scenario-based numerical analysis was performed to generate a flood hydrograph, and the parameters required were selected following a consideration of historical records from other volcanoes. The amount of water at the outer rim as a function of time was used as an upper boundary condition for the downstream routing process for a period of 10 days. Data from the USGS were used to generate a DEM with a resolution of 100 m, and remotely sensed satellite data from the moderate-resolution imaging spectroradiometer (MODIS) were used to show land cover and use. The simulation was generated using the software FLO-2D and was superposed on the remotely sensed map. The results show that the inundation area would cover about 80% of the urban area near Erdaobaihezhen assuming a 10 m/hr collapse rate, and 98% of the area would be flooded assuming a 100 m/hr collapse rate.

The Optimal Energy Mix in South Korea's Electricity Sector for Low Carbon Energy Transition in 2030: In Consideration of INDC and Sequential Shutdown of Decrepit Nuclear Power Plants (저탄소 에너지 전환을 위한 2030년 최적전력구성비: 노후 원전 단계적 폐쇄와 INDC를 고려한 시나리오)

  • Kim, Dongyoon;Hwang, Minsup
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.479-494
    • /
    • 2017
  • After Fukushima incident, negative sentiment towards nuclear power has led to transition in policies that reduce the dependency on nuclear power in some countries. President Moon of Republic of Korea also announced a national plan of decommissioning retired nuclear power plants stage by stage. Therefore, nuclear power that once was considered the critical solution to energy security and climate change is now a limited option. This study aims to find an optimal energy mix in Korea's electricity system from 2016 through 2030 to combat climate change through energy transition with minimum cost. The study is divided into two different scenarios; energy transition and nuclear sustenance, to compare the total costs of the systems. Both scenarios show that electricity generated by wind technology increases from 2018 whereas that of photovoltaic(PV) increases from 2021. However, the total cost of the energy transition scenario was USD 4.7 billion more expensive than the nuclear sustenance scenario.

Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network

  • Wu, Guohua;Tong, Jiejuan;Zhang, Liguo;Yuan, Diping;Xiao, Yiqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2534-2546
    • /
    • 2021
  • Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.

Installation Design of Landscape-use Artificial Channel for Sustainable Management -Focusing on the Water Volume and Equipment System of Streamlet in Jeonju and Wanju Innovation City- (계류형 수경시설의 지속가능한 운영·관리를 위한 설치방안 - 전주·완주 혁신도시 실개천 용량과 설비계통을 중심으로 -)

  • Oh, Chang-Song
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.113-127
    • /
    • 2021
  • Although planning techniques linking parks, green areas, and waterways have become common, there are frequent disruptions in the operation and management of landscape-use artificial channels (LuAC). Therefore, this study examined a design to promote the sustainable management and operation of a LuAC using rainwater for the streamlets of the Jeonju-Wanju Innovative City. In order to accomplish the purpose of this study, scenarios were set up by dividing the design into waterhead and waterway portions. First, the scenario regarding the waterhead was analyzed to calculate the water supply and storage required for the waterway and waterhead. The analysis showed that the waterway requires a water supply of 676.8 tons/months, 3,018 tons to 5,512 tons of storage space, and a water depth of 0.75 m to 1.37 m considering the ecological and landscape aspects. The second scenario is to select an effective system of facilities for the operation and management of the LuAC. To accomplish this, a single-circulation system (SCS), which transports water to a highland location was compared to a multi-circulation system (MCS), which supplied water separately to each water space and operated independently. The results showed that the MCS, which was operated independently by small power units, was more effective owing to the vast difference in water supply operation times.

Analysis of the Effect of Autonomous Driving of Waste Vehicles on CO2 Emission using Macroscopic Model (거시모형을 이용한 폐기물 차량 자율주행이 이산화탄소 배출량에 미치는 영향 분석)

  • Yoon, Byoungjo;Hong, Kiman
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.165-175
    • /
    • 2021
  • Purpose: The purpose of this study is to quantitatively present the carbon dioxide(CO2) emission change according to the application of autonomous driving technology at the network level for waste vehicles in the metropolitan area. Method: The target year was set to 2030, and the analysis method estimated the carbon dioxide (CO2) emissions for each road link through user equilibrium assignment when unapplied scenario. The application scenario performed traffic assignment using route data on the premise that the group was running in accordance with the application of autonomous driving technology to waste vehicles. In addition, the other means estimated the carbon dioxide emissions through user balance allocation by reflecting the results of the waste vehicle allocation. Result: As a result of the analysis, carbon dioxide(CO2) emissions were found to be reduced by about 56.9ton/day from the national network level, and the Seoul metropolitan area was analyzed to be reduced by about 54.7ton/day. Conclusion: This study quantitatively presented environmental impacts among various social effects that autonomous driving technology will bring, and in the future, development of various analytical methodologies and related studies should be continuously conducted.

Analysis of Future Land Use and Climate Change Impact on Stream Discharge (미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석)

  • Ahn, So Ra;Lee, Yong Jun;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.215-224
    • /
    • 2008
  • The effect of streamflow considering future land use change and vegetation index information by climate change scenario was assessed using SLURP (Semi-distributed Land-Use Runoff Process) model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for the upstream watershed ($260.4km^2$) of Gyeongan water level gauging station. By applying CA-Markov technique, the future land uses (2030, 2060, 2090) were predicted after test the comparison of 2004 Landsat land use and 2004 CA-Markov land use by 1996 and 2000 land use data. The future land use showed a tendency that the forest and paddy decreased while urban, grassland and bareground increased. The future vegetation indices (2030, 2060, 2090) were estimated by the equation of linear regression between monthly NDVI of NOAA AVHRR images and monthly mean temperature of 5 years (1998-2002). Using CCCma CGCM2 simulation result based on SRES A2 and B2 scenario (2030s, 2060s, 2090s) of IPCC and data were downscaled by Stochastic Spatio-Temporal Random Cascade Model (SST-RCM) technique, the model showed that the future runoff ratio was predicted from 13% to 34% while the runoff ratio of 1999-2002 was 59%. On the other hand, the impact on runoff ratio by land use change showed about 0.1% to 1% increase.

A Study on the Applicability and Introduction Standards of Cut-through Roundabouts (직결형 회전교차로의 적용 가능성과 도입 기준에 관한 연구)

  • KIM, Ju Hyun;SHIN, Eon Kyo;KIM, Jun;KWON, Minyoung
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.449-464
    • /
    • 2016
  • The purpose of this study is to test applicability of cut-through roundabouts at a congested intersection and to provide the traffic volume ranges for theirs application. Various test scenarios were developed according to variation of total traffic volume, left-turn ratio to total traffic volume, and ratio of major road traffic volume to minor road traffic volume. In addition, three intersection types of cut-through roundabout, roundabout, and signalized intersection were compared with respect to delay times for each scenario, resulted from the simulation using VISSIM. In case of the ratio of major road traffic volume to minor road traffic volume, 6:4, the delay times of cut-through roundabout decreased up to 30% of left-turn ratio to total traffic volume for 400vphpl, up to 20% for 500vphpl, up to 10% for 600vphpl. In case of the ratio, 7:3, they are the same as 6:4 for 400vphpl, 500vphpl, and 600vphpl but they decreased up to 30% for 300vphpl and up to 10% for 700vphpl. In case of the ratio, 8:2, they are the same as 7:3 for 400vphpl, 500vphpl, and 700vphpl but they were reduced by 10% to 30% for 300vphpl and 20% for 600vphpl. It is concluded that the smaller left-turn ratio to total traffic volume as well as the ratio of minor road traffic volume to major road traffic volume is, the more effective in reducing delay times the cut-through roundabout is. Cut-through roundabouts can be expected to reduce delay times at a signalized intersections with traffic conditions above-mentioned.

The study on Installation Areas of Permeable Pavement for Stormwater Control (우수유출 저감을 위한 투수성 포장의 설치 면적에 관한 연구)

  • Jang, Young-su;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.104-109
    • /
    • 2017
  • The flooding and deterioration of water quality caused by urbanization and climate change are becoming more serious. In order to respond to this, studies on low impact development (LID) technology, which is designed to restore the hydrological system of the urban basin to its natural state, have been actively pursued all over the world, The announcement of the low carbon green growth law, hydrophilic area special law, etc., highlights the importance of technology such as the LID method. However, whereas various developments have been made in relation to the current LID element technology, there has been little research designed to verify its effectiveness. In this study, we analyzed the optimum spatial distribution of pitcher fire pitcher packing in parking lots using the K - LIDM model to verify the effectiveness of the low impact development (LID) method in the early stages. Using the eight package scenario and the three rain intensity scenarios, it was found that the lower 40% pitcher packaging results in an approximately 90% spill reduction effect, as in the case of the whole pitcher's package. The confirmation of these analyses and experimental verification is expected to ensure that the actual pitcher packaging will be used as a basis for arranging LID facilities such as urban planning and housing development in the future.