• Title/Summary/Keyword: urban groundwater

Search Result 217, Processing Time 0.025 seconds

An Efficient 3D Inversion of MT Data Using Approximate Sensitivities (효율적인 3차원 MT 역산을 위한 다양한 감도의 이용)

  • Han, Nu-Ree;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.259-267
    • /
    • 2007
  • An efficient algorithm for inverting static-shifted magnetotelluric (MT) data has been proposed to produce a three-dimensional (3D) resistivity model. In the Gauss-Newton approach, computational costs associated with construction of a full sensitivity matrix usually make 3D MT inversion impractical. This computational difficulty may be overcome by using approximate sensitivities. We use four kinds of sensitivities in particular orders in the inversion process. These sensitivities are computed 1) analytically for an initial, homogeneous earth, 2) exactly for a current model, 3) approximately by the Broyden method, and 4) approximately using the previous adjoint fields. Inversion experiments with static-shifted synthetic and field MT data indicate that inversion results are highly dependent on characteristics of data and thus applying various combinations of sensitivities is helpful in obtaining a good image of the subsurface structure with reasonable computation time.

Microbial Adaptation in a Nitrate Removal Column Reactor Using Sulfur-Based Autotrophic Denitrification (질산성 질소 제거를 위한 독립영양 황탈질 칼럼에서의 미생물 적응에 관한 연구)

  • Shin, Do-Yun;Moon, Hee-Sun;Kim, Jae-Young;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.38-44
    • /
    • 2006
  • Two sulfur-based column reactors inoculated with a bacterial consortium containing autotrophic denitrifiers were operated for 100 and 500 days, respectively and nitrate removal efficiency and the adaptation of microbial communities in the columns were monitored with column depths and time. For better understanding the adaptation phenomenon, molecular techniques including 16S rDNA sequencing and DGGE analysis were employed. Although both columns showed about 99% of nitrate removal efficiency heterotrophic denitrifiers such as Cenibacterium arsenioxidans and Geothrix fermentans were found to a significant portion at the initial stage of the 100-day reactor operation. However, as operation time increased, an autotrophic denitrifier Thiobacillus denitrificans became a dominant bacterial species throughout the column. A similar trend was also observed in the 500-day column. In addition, nitrate removal efficiencies were different with column depths and thus bacterial species with different metabolic activities were found at the corresponding depths. Especially, T. denitrificans was successfully adapted and colonized at the bottom parts of the columns where most nitrate was reduced.

Time-lapse Geophysical Monitoring of $CO_2$ Sequestration (시간 경과에 따른 반복적 물리탐사 기법을 이용한 이산화탄소의 지중처리 모니터링)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Nam, Myung-Jin;Song, Yoon-Ho;Lee, Tae-Jong;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.280-286
    • /
    • 2005
  • Geological sequestration of carbon dioxide ($CO_2$) is one of the most effective strategies far long-term removal of greenhouse gas from atmosphere. This paper reviews three projects for the $CO_2$ sequestration in geological formation. A unique $CO_2$ injection into a marine aquifer has been successfully monitored with repeated surface seismic measurements in the North Sea Sleipner West field. The seismic images reveal the extent and internal shape of the $CO_2$ bubble. Massive miscible $CO_2$ has been injected into a complex fractured carbonate reservoir at the Weyburn oil filed. High-resolution time-lapse P-wave data were successfully obtained to map the features of $CO_2$ movements within the two thin zones of different lithology. From the time-lapse crosswell EM imaging at the Lost Hills oil field in central California, U.S.A., the replacement of brine with $CO_2$ has been confirmed through a decrease of conductivity. The conductivity image was successfully compared with induction logs observed in the two wells.

GIS-based Subsidence Hazard Map in Urban Area (GIS 기반의 도심지 지반침하지도 작성 사례)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Cho, Jin-Woo;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.5-14
    • /
    • 2017
  • The hazard maps for predicting collapse on natural slopes consist of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as soil drainage, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of subsidence of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual subsidence points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage.

The Development of Coupled SWAT-SWMM Model (II) Model Characteristics and Evaluation (SWAT-SWMM 결합모형의 개발 (II) 모형의 특징 및 평가)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.599-612
    • /
    • 2004
  • The continuous long-term rainfall-runoff simulation model SWAT has the advantage of being able to account for various land use, however, SWAT lacks the capability of simulating the drainage characteristics of urban area. On the other hand, SWMM, which is the most popular model for runoff analysis of urban watershed, has the advantage of being capable of considering surface and drainage characteristics in urban area, but SWMM cannot easily account for land use other than urban area within a watershed. In this study, SWAT-SWMM model, which builds on the strengths of SWAT and SWMM, has been applied to the Osan River Watershed which is a tributary watershed to the Gyung-Ahn River. From the application, the results from coupled SWAT-SWMM model has been compared to the ones from SWAT for each hydrologic component such as evapotranspiration, surface runoff, groundwater flow, and watershed and channel discharge, and the runoff characteristics of two models for each hydrologic component has been discussed.

Analysis on Water Retention Rate according to Water Cycle Characteristics in Jeju Gotjawal Forest (제주 곶자왈 산림의 물순환 특성에 따른 수원함양률 분석)

  • Jaehoon Kim;Honggeun Lim;Hyung Tae Choi;Qiwen Li;Haewon Moon;Hyungsoon Choi
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1013-1025
    • /
    • 2022
  • This study was carried out to analyze water cycle characteristics and evaluate water retention function in Jeju Gotjawal forest from 2013 to 2017. The average ratio of throughfall, stemflow, interception loss in Seonhul Gotjawal (SH) and Cheongsu Gotjawal (CS) was 43.1%, 15.8%, and 41.1%, respectively. Rainfall-throughfall, rainfall-stemflow, and rainfall-interception loss were expressed as linear regression equation (p<0.001). The comparison results showed that SH was higher than CS (p<0.05), indicating that the canopy area had an important effect on the difference in stand structure. The average water resources retention rate of the Gotjawal region was 41.9%, which is similar to the total water resources retention rate (40.6%) of Jeju Special Self-Governing Province (JSSGP). Currently, the development of Gotjawal is in progress in JSSGP. The development of Gotjawal will lead to a decrease in the water resources retention rate due to changes in the surface environment such as an increase in impervious areas, which will affect the total groundwater content of JSSGP. Therefore, the conservation of the Gotjawal area is judged to be very important from the point of view of water conservation.

Chemistry of persulfates for the oxidation of organic contaminants in water

  • Lee, Changha;Kim, Hak-Hyeon;Park, Noh-Back
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.405-419
    • /
    • 2018
  • Persulfates (i.e., peroxymonosulfate and peroxydisulfate) are capable of oxidizing a wide range of organic compounds via direct reactions, as well as by indirect reactions by the radical intermediates. In aqueous solution, persulfates undergo self-decomposition, which is accelerated by thermal, photochemical and metal-catalyzed methods, which usually involve the generation of various radical species. The chemistry of persulfates has been studied since the early twentieth century. However, its environmental application has recently gained attention, as persulfates show promise in in situ chemical oxidation (ISCO) for soil and groundwater remediation. Persulfates are known to have both reactivity and persistence in the subsurface, which can provide advantages over other oxidants inclined toward either of the two properties. Besides the ISCO applications, recent studies have shown that the persulfate oxidation also has the potential for wastewater treatment and disinfection. This article reviews the chemistry regarding the hydrolysis, photolysis and catalysis of persulfates and the reactions of persulfates with organic compounds in aqueous solution. This article is intended to provide insight into interpreting the behaviors of the contaminant oxidation by persulfates, as well as developing new persulfate-based oxidation technologies.

The effect of land use characteristics on heavy metal contaminations of sediments from some gullypot catchments in Seoul (주요산업활동 유형에 따른 서울시 도로변 하수퇴적물의 중금속오염 특성)

  • 이평구;최상훈;김성환;윤성택
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.28-32
    • /
    • 2000
  • There are many different chemical pollutants that originate from atmospheric deposition and transportational activities along roads. This paper review the characteristics of heavy metal pollution, relationships between land use and pollutant load in urban area. Four land use areas in Seoul were selected for sampling and study with different characteristics during the period from April 1998 and February 2000. A series of studies have been carried out concerning the physicochemical characteristics of the sediments settling down in a gully pot to evaluate the contamination for heavy metals. The sediment samples from gully pots were characterized by the chemical extraction experiments. Sediments are characterized by very high concentrations of heavy metals, probably because of a long-term accumulation of vehicle- and industrial-related pollutants. The characteristics of heavy metal pollution show that each land use has different sources of contaminations. Mean Zn concentration in Yeouido and Junggu areas is 2-3 times higher than those in Dobonggu area. This suggests that Zn may be derived from the source of automobile traffic. The mean concentrations of Cu and Cr are very significantly high in Junggu and Gurogu areas and indicate that the industrial activities may contribute to the accumulation of Cu and Cr in sediments. The low Pb levels throughout the whole study areas in Seoul can be accounted for the use of unleaded gasoline since 1987.

  • PDF

Permeability Influence of Base Soil for Analysis of Road Landfill Stability (도로성토사면의 안정성 분석시 원지반 투수성의 영향)

  • Kim, Young-Muk;Kim, Chung-Ki;Kim, Man-Goo;Kim, Geon-Hae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.890-897
    • /
    • 2005
  • Stability of embankment is influenced on landfill condition, permeability, shear strength and soil engineering propensity and so on, and need examination in reply because is different according to change of soil property of foundation ground and permeability condition. Analyzed seepage behaviour by finite element method for embankment, and change permeability of base to analyze effect that permeability of ground water table formation before embankment and analyze seepage behaviour to typical embankment in this research. In the case of permeability of foundation ground is 10 more than landfill permeability, rise of groundwater table was changed slightly. Pore water pressure was decreased slowly in landfill after rainfall. The effect of permeability of foundation ground was effected in change of pore water pressure. For permeability of foundation ground is 10 more than landfill, stability of road landfill was small changed during rainfall. But in the case of permeability of base soil similar to landfill permeability, road landfill stability was large decreased during rainfall.

  • PDF

Application of electromagnetic methods to the investigation of seawater intrusion into coastal aquifer - A case study in the Hasunuma area, Chiba Prefecture, Japan

  • Mitsuhata Yuji;Uchida Toshihiro
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.335-339
    • /
    • 2003
  • The estimation of seawater intrusion into deep aquifers has been becoming an important subject in terms of site characterization for geological disposal of radioactive waste. Conventional direct-current resistivity methods have been used for ground water explorations and recently have been applied to environmental problems. However, electromagnetic methods are more practical and useful for such a deep investigation. We consider audio-frequency magnetotelluric (AMT) and surface-to-borehole electromagnetic (EM) tomography methods as promising tools for the investigation of deep aquifer. These methods were tested in the Hasunuma area, Chiba Prefecture, Japan. Although the study area is in an urban area, high-quality AMT data were acquired, which was mainly accomplished by night-time data recording and remote-reference data processing. One-dimensional inversion results of the AMT data revealed two extremely conductive zones, which is consistent with the electrical conductivity profile of pore water in core samples. It can be interpreted as the seawater intrusions into both zones. However, the chemical analysis of the groundwater sampled in the deep zone suggests that this groundwater must be fossil seawater that had been confined during sedimentation processes. In addition, the permeability coefficient of the deep layer is very low. Thus the deep conductive zone corresponds to the fossil seawater regarded as being difficult to flow.

  • PDF