• Title/Summary/Keyword: urban flood model

Search Result 286, Processing Time 0.028 seconds

Flood Simulation for Basin-Shaped Urban Watershed Considering Surface Flow (분지형 도시유역에서의 노면류를 고려한 침수모의)

  • Ahn, Jeonghwan;Cho, Woncheol;Jung, Jaehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.841-847
    • /
    • 2014
  • Urban runoff models have been continuously developing with concerns for urban flood. Recently, models that be able to quantitatively analyze surface inundation caused by overflowed water from storm sewer were also developed by coupling 1-dimensional sewer model and 2-dimensional surface flow model. However, only overflowed water from storm sewer can be analyzed by the models have been developed until now. They are limited to be not able to analyze surface inundation caused by surface runoff that could not flow into the storm sewer. In order to overcome the limitation, basin-overlap method was devised adding a dummy 1-dimensional sewer layer to the model, so it can consider the efficiency of inflow to the storm sewer system. XP-SWMM 2011 is applied for urban runoff model and the flood event occurred on July 27, 2011 in basin-shaped Sadangcheon watershed is chosen for study inundation event. According to simulation results basin-overlap method reappear the observed inundation event more precisely than traditional method. This results suggest that drainage system has to be improved for reducing inundation caused by surface runoff and would be used as considerations for planning an urban basin design magnitude.

Evaluation of the Application on Distributed Inundation Routing Model (SIMOD) Using MDM and FWA Method (다중흐름방향법과 평수가정법을 이용한 분포형 침수추적모형(SIMOD)의 적용성 평가)

  • Kim, Jin Hyuck;Lee, Suk Ho;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.261-268
    • /
    • 2018
  • The study used the simplified flooding analysis model, SIMOD, to distribute the total flood discharge by time, so research on flooding in urban areas can be conducted. The conventional flooding analysis models have limitations in constructing input data and take a long time for analysis. However, SIMOD is useful because it supports rapid decision-making process using quick modeling based on simple hydrological data, such as topography and inflow flood of the study area, to analyze submerged routes formed by flooding. Therefore, the study used the SIMOD model to analyze flooding in urban areas before conducting a comparative study with the outputs from FLO-2D, which is one of the conventional flooding analysis models, to identify the model's applicability. Seongseoje was selected as the study area, as it is located downstream the Geumho river where streams flow in the adjacent areas, and dikes are high enough to apply the "Overflow and Break" scenario for urban areas. With regard to topography, the study applied DEM data for the conventional flooding analysis and DSM data to represent urban building communities, distribution of roads, etc. Input flood discharge was calculated by applying the rectangular weir equation under the bank and break scenario through a 200-year return period of a design flood level. Comparative analysis was conducted in a flooded area with a simulation time of 1-24 hours. The time for the 24-hour simulation in SIMOD was less than 7 minutes. Compared with FLO-2D, the difference in flooded areas was less than 20%. Furthermore, the study identified the need for topography data using DSM for urban areas, as the analysis result that applies DSM showed the influence of roads and buildings.

Modeling flood and inundation in the lower ha thanh river system, Binh dinh province, vietnam

  • Don, N. Cao;Hang, N.T. Minh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.195-195
    • /
    • 2016
  • Kon - Ha Thanh River basin is the largest and the most important river basin in Binh Dinh, a province in the South Central Coast of Vietnam. In the lower rivers, frequent flooding and inundation caused by heavy rains, upstream flood and or uncontrolled flood released from upstream reservoirs, are very serious, causing damage to agriculture, socio-economic activity, human livelihood, property and lives. The damage is expected to increase in the future as a result of climate change. An advanced flood warning system could provide achievable non-structural measures for reducing such damages. In this study, we applied a modelling system which intergrates a 1-D river flow model and a 2-D surface flow model for simulating hydrodynamic flows in the river system and floodplain inundation. In the model, exchange of flows between the river and surface floodplain is calculated through established links, which determine the overflow from river nodes to surface grids or vice versa. These occur due to overtopping or failure of the levee when water height surpasses levee height. A GIS based comprehensive raster database of different spatial data layers was prepared and used in the model that incorporated detailed information about urban terrain features like embankments, roads, bridges, culverts, etc. in the simulation. The model calibration and validation were made using observed data in some gauging stations and flood extents in the floodplain. This research serves as an example how advanced modelling combined with GIS data can be used to support the development of efficient strategies for flood emergency and evacuation but also for designing flood mitigation measures.

  • PDF

Rainfall Correction of Radar Image Data and Estimation Runoff of Urban Stream using Vflo (레이더 자료의 강우보정 및 Vflo를 활용한 도심하천의 홍수량 산정)

  • Kang, Bo-Seong;Yang, Sung-Kee;Kim, Yong-Seok
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.411-420
    • /
    • 2017
  • This research aims at comparing the accuracy of flood discharge estimation. For this, we focused on the Oedo watershed of Jeju Island and compared flood discharge by analyzing the values as follows: (1) the concentration of the lumped model (HEC-HMS) and distributed model (Vflo), and (2) the in-situ data using Fixed Surface Image Velocimetry (FSIV). The flood discharge estimation from the HEC-HMS model is slightly larger than the Vflo model results. This result shows that the estimations of the HEC-HMS are larger than the flood discharge data by 4.43 to 36.24% and that of the Vflo are larger by 8.49 to 11%. In terms of the error analysis at the peak discharge occurrence time of each mapping, HEC-HMS is one hour later than the measured data, but Vflo is almost the same as the measured data.

Integration Model for Urban Flood Inundation Linked with Underground Space Flood Analysis Model (지하공간 침수해석모형과 연계한 도시침수해석 통합모형)

  • Lee, Chang-Hee;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.313-324
    • /
    • 2007
  • An irregular cell-based numerical model was developed to analyze underground space flooding. In this model, the flow characteristics in underground space were computed by link-node system. Also, the model can simulate the underground flood flow related to the influence of stairs and wall-structures. Empirical discharge formula were introduced to analyze weir-type flow for shopping mall, and channel-type flow for subway railroad respectively. The simulated results matched in reasonable range compared with the observed depth. The dual-drainage inundation analysis model and the underground space flood analysis model were integrated using visual basic application of ArcGIS system. The developed model can help the decision support system of flood control authority for redesigning and constructing flood prevention structures and making the potential inundation zone, and establishing flood-mitigation measures.

Urban Flood Risk Assessment Considering Climate Change Using Bayesian Probability Statistics and GIS: A Case Study from Seocho-Gu, Seoul (베이지안 확률통계와 GIS를 연계한 기후변화 도시홍수 리스크 평가: 서울시 서초구를 대상으로)

  • LEE, Sang-Hyeok;KANG, Jung-Eun;PARK, Chang-Sug
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.36-51
    • /
    • 2016
  • This study assessed urban flood risk using a Bayesian probability statistical method and GIS incorporating a climate change scenario. Risk is assessed based on a combination of hazard probability and its consequences, the degree of impact. Flood probability was calculated on the basis of a Bayesian model and future flood occurrence likelihoods were estimated using climate change scenario data. The flood impacts include human and property damage. Focusing on Seocho-gu, Seoul, the findings are as follows. Current flood probability is high in areas near rivers, as well as low lying and impervious areas, such as Seocho-dong and Banpo-dong. Flood risk areas are predicted to increase by a multiple of 1.3 from 2030 to 2050. Risk assessment results generally show that human risk is relatively high in high-rise residential zones, whereas property risk is high in commercial zones. The magnitude of property damage risk for 2050 increased by 6.6% compared to 2030. The proposed flood risk assessment method provides detailed spatial results that will contribute to decision making for disaster mitigation.

Development of a shot noise process based rainfall-runoff model for urban flood warning system (도시홍수예경보를 위한 shot noise process 기반 강우-유출 모형 개발)

  • Kang, Minseok;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.19-33
    • /
    • 2018
  • This study proposed a rainfall-runoff model for the purpose of real-time flood warning in urban basins. The proposed model was based on the shot noise process, which is expressed as a sum of shot noises determined independently with the peak value, decay parameter and time delay of each sub-basin. The proposed model was different from other rainfall-runoff models from the point that the runoff from each sub-basin reaches the basin outlet independently. The model parameters can be easily determined by the empirical formulas for the concentration time and storage coefficient of a basin and those of the pipe flow. The proposed model was applied to the total of three rainfall events observed at the Jungdong, Guro 1 and Daerim 2 pumping stations to evaluate its applicability. Summarizing the results is as follows. (1) The unit response function of the proposed model, different from other rainfall-runoff models, has the same shape regardless of the rainfall duration. (2) The proposed model shows a convergent shape as the calculation time interval becomes smaller. As the proposed model was proposed to be applied to urban basins, one-minute of calculation time interval would be most appropriate. (3) Application of the one-minute unit response function to the observed rainfall events showed that the simulated runoff hydrographs were very similar to those observed. This result indicates that the proposed model has a good application potential for the rainfall-runoff analysis in urban basins.

Spatial Patterns of Urban Flood Vulnerability in Seoul (도시 홍수 취약성의 공간적 분포 - 서울 지역을 중심으로 -)

  • Kim, Jisoo;Sung, Hyo Hyun;Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.615-626
    • /
    • 2013
  • In this study, spatial patterns of the urban flood vulnerability index in Seoul are examined by considering climate exposure, sensitivity, and adaptability associated with floodings for recent 5 year (2006~2010) period by the smallest administrative unit called Dong. According to the results of correlation analyses based on the IPCC(Intergovernmental Panel on Climate Change)'s vulnerability model, among many variables associated with urban flooding, rainwater tank capacity, 1-day maximum precipitation and flood pumping station capacity have statistically-significant, and relatively-high correlations with the number of flood damage in Seoul. The flood vulnerability map demonstrates that the extensive areas along Anyang and Joongnang streams show relatively high flood vulnerability in Seoul due to high sensitivity. Especially in case of Joongnang stream areas, climatic factors also contribute to the increase of flood vulnerability. At local scales, several Dong areas in Gangdong-gu and Songpa-gu also show high flood vulnerability due to low adaptability, while those in Gangnam-gu do due to high sensibility and climate factor such as extreme rainfall events. These results derived from the flood vulnerability map by Dong unit can be utilized as primary data in establishing the adaptation, management and proactive policies for flooding prevention within the urban areas in more detail.

  • PDF

A study on the Effective Operation of Pump Stations (빗물펌프장 운영합리화 방안 연구)

  • 한국원자력연구소
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.133-144
    • /
    • 1998
  • Recent development booms in urban watersheds have increased impermeable areas and brought about an increase of peak flood. Eventually, some people living in the lower area of an urban watershed, very often and seriously, have suffered form inundation. In this study, for minimization of inundation in urban watersheds, the operational criteria for pump stations are suggested. At first, ILLUDAS has been selected as a runoff model which can explain the past precipitations. Secondly the operational criteria for pump stations could be suggested by working out an operational criteria for pump stations could be suggested by working out an operation program from the relationship between pumping capacity and accumulative hydrographs, and from the Intensity-Duration-Frequency relationship.

  • PDF

Analysis of Small reservoir system by Flood control ability augmentation (치수능력 증대에 따른 저수지시스템 분석)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.995-1004
    • /
    • 2005
  • As a research establish reservoir safety operation for small dam systems. This study presents hydrologic analysis conducted in the Duckdong and Bomun dam watershed based on various rainfall data and increase inflow. Especially the Duckdong dam without flood control feature are widely exposed to the risk of flooding, thus it is constructed emergency gate at present. In this study reservoir routing program was simulation for basin runoff estimating using HEC-HMS model, the model simulation the reservoir condition of emergency Sate with and without. At the reservoir analysis results is the Duckdong dam average storage decrease $20\%$ with emergency gate than without emergency gate. Also, the Bomun dam is not affected by the Duckdong flood control augmentation.