• 제목/요약/키워드: urban climate

검색결과 893건 처리시간 0.027초

도시공원녹지의 생태성 및 기후변화 대응성 평가 기초 연구 (A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and Responsiveness to Climate Change)

  • 성현찬;황소영
    • 한국환경복원기술학회지
    • /
    • 제16권3호
    • /
    • pp.107-117
    • /
    • 2013
  • Problems in regard of ecological stability of urban ecosystem ensue from climate change and urbanization. Particularly, urban ecological conditions are deteriorating both quantitatively and qualitatively to a great extent. The present study aims to assess the current condition of selected sites (i. e. urban green zones and parks) in terms of preset assessment components; to find out problems and relevant solutions to improve the quality and quantity of parks and green zones; and ultimately to suggest some measures applicable to coping with climate change as well as to securing the ecological attributes of urban green zones and parks. According to the findings of this study, from quantitative perspectives, ecological attributes and responsiveness to climate change are high on account of the large natural-soil area(80%). By contrast, from qualitative perspectives including the planting structure (1 layer: 47%), the percentage of bush area(17%), the connectivity with surrounding green zones (independent types: 44%), the wind paths considered (5.6%), the tree species with high carbon absorption rates (20%), water cycles (17%), energy (8%) and carbon storage capacities(61%), ecological attributes and responsiveness to climate change were found very low. These findings suggest that the ecological values of urban parks and green zones should be improved in the future by conserving their original forms, securing natural-soil grounds and employing multi-layered planting structures and water bodies, and that responsiveness to climate change should be enhanced by planting tree species with high carbon storage capacities and obtaining detention ponds. In sum, robust efforts should be exerted in the initial planning stages, and sustained, to apply the methodology of green-zone development along with securing ecological attributes and responsiveness to climate change.

해풍(海風)을 이용한 하계(夏季) 도시열환경(都市熱環境)의 풍도(風道)계획과 인체의 쾌적성에 관한 연구 (Estimating the cooling effect of see breeze along canals and outdoor thermal comfort on urban heat load in summer)

  • 정창원;윤인;최영식
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.19-25
    • /
    • 1999
  • A new urban design method from the viewpoint of climate is considered to be desired for urban life. The authors verified on an environmental planning based on new urban design concept which introduced the effect of sea breeze blowing along canals. The field observation of urban thermal environment were carried out to examine the cooling effects of a river through city. The observations were conducted to find the effect of a sea breeze and climate in summer along canals. Effective distance from the sea and cooling effect of the sea breeze on urban temperature was analyzed. The thermal index using outdoor environment was modified with New Effective Temperature ET*. On the basis of the observation. Human thermal comfort is relieved and affected by sea breeze blowing along canals. The canals were utilized as the trail on which sea breeze blows towards the center of city. From these results, The wind trail is one of the effective passive design method from the viewpoint of urban climate.

  • PDF

도시녹지 내 주요 식물상의 개엽시기 및 잎의 성장 특성 비교 (Comparing a Perspective on the Leaf Burst Timing and Leaf Growth Performance of Major Plants observed in Urban Forests)

  • 장갑수
    • 한국환경복원기술학회지
    • /
    • 제15권2호
    • /
    • pp.127-136
    • /
    • 2012
  • Global climate change and urban heat island have been the main factors which changed leaf burst timing and leaf growth performance in urban forests. Therefore, the ecosystem in urban forests were modified and the types and composition of wildlives, living in the urban forests, were desperately changed due to the urban heat island. This study was done to identify phenological phenomena appeared in urban forests due to the urban climate change by comparing the morphological changes of leaves due to the change of temperature in Spring. The study focused on nine urban forests distributed in Daegu city, where weekly temperature and the morphological changes of the plants were mainly observed. Urban forests had different temperature depending on where each was located in the urban area. The difference of temperature in forests in and outside the urban area was verified by SPSS (Statistical Package for the Social Sciences), which divided the urban forests into about three groups; the one located outside the city, another group located in the middle of the city, and the other located close to the outside forests. The forests located in the middle of the city were showing the earlier leaf burst timing and leaf growth performance, while forests, distributed outside the city, were showing relatively late leaf burst timing and leaf performance.

Urban Thermo-profiles and Community Structure of Quercus mongolica Forests along an Urban-rural Land Use Gradient: Implications for Management and Restoration of Urban Ecosystems

  • Cho, Yong-Chan;Cho, Hyun-Je;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • 제32권3호
    • /
    • pp.167-176
    • /
    • 2009
  • Land cover changes associated with urbanization have driven climate change and pollution, which alter properties of ecosystems at local, regional, and continental scales. Thus, the relationships among urban ecological variables such as community composition, structure, health, soil and functioning need to be better understood to restore and improve urban ecosystems. In this study, we discuss urban ecosystem management and research from a futuristic perspective based on analyses of vegetation structure, composition, and successional trends, as well as the chemical properties of soils and the distribution of heat along an urban-rural gradient. Urban thermo-profile analysis using satellite images showed an obvious mitigating effect of vegetation on the Seoul heat island. Community attributes of Quercus mongolica stands reflected the effects of urbanization, such as pronounced increases in disturbance-related and pollution-tolerant species, such as Styrax japonica and Sorbus alnifolia. Retrogressive successional trends were detected in urban sites relative to those in rural sites. Changes in the urban climate and biotic environment have the potential to significantly influence the practice and outcomes of ecological management, restoration and forecasting because of the associated changes in future bio-physical settings. Thus, for management (i.e., creation and restoration) of urban green spaces, forward-thinking perspectives supported by historical information are necessary.

도시 및 기후특성이 에너지 회복력에 미치는 영향 - 정전발생시간을 중심으로 - (The Effect of Urban and Climate Characteristics on Energy Resilience - Focusing on Blackout Time -)

  • 이동성;문태훈
    • 국토계획
    • /
    • 제54권4호
    • /
    • pp.122-130
    • /
    • 2019
  • The purpose of this study is to analyze effect of climate and urban factors on energy resilience, and to explore policy alternatives to strengthen resilience of energy system. For this purpose, this study used extensive literature review on resilience studies and multiple regression analysis. In this study, blackout time was set as a dependent variable. And the independent variables were divided into climate and urban (robustness, countermeasure capacity) characteristics. As a result of the analysis, in terms of climate characteristics, maximum wind speed and cooling/heating degree-day have statistically significant impact on blackout time. With regard to urban characteristics, number of consumer, ratio of deteriorated housing and coast dummy variables have statistically significant impact on blackout time. And the ratio of government employees and road ratio were found to be the most influencing factors to shorten time taken to restore original level of electricity supply. Based on the study results, several policy suggestions to improve energy resilience were made such as continuous management of vulnerable areas and strengthening disaster response services. This study only considered engineering dimension of resilience. Further studies need to be approached on ecological & social-ecological dimension.

단기 강우예측 정보를 이용한 도시하천 유출모의 적용 (Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast)

  • 양유빈;임창묵;윤선권
    • 한국농공학회논문집
    • /
    • 제59권2호
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

토지피복 변화가 도시열수지에 미치는 영향에 관한 수치시뮬레이션 (Numerical Simulation on the Effect of the Land Coverage Change on the Urban Heat Budget)

  • 김상옥;여인애;한경민;이정재;윤성환
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.176-179
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed using 3-Dimensional Urban Canopy Model. The characteristics of urban thermal environment was analyzed by classifying land coverage and increasing natural land coverage ratio. The results are as follows. The characteristics of the land coverage on urban thermal environment formation can be summarized by the effects like higher temperature on the artificial coverage, and the contrary effects on the natural coverage. When the water coverage 100% was made up, maximum temperature was declined by $5.5^{\circ}C$, humidity by the 6.5g/kg, wind velocity by 0.6m/s, convective sensible heat by $400W/m^2$ and the evaporative latent heat was increased by $370W/m^2$ compared to when artificial coverage 100% was formed. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analysing urban climate phenomenon.

  • PDF

도시의 수목이 기온의 조절에 미치는 영향 (Influences of Urban Trees on the Control of the Temperature)

  • 김수봉;김해동
    • 한국조경학회지
    • /
    • 제30권3호
    • /
    • pp.25-34
    • /
    • 2002
  • The purpose of this paper is to discuss the function of microclimate amelioration of urban trees regarding the environmental benefits of street trees in summer, focusing on the heat pollution-urban heat island, tropical climate day's phenomenon and air pollution. We measured the diurnal variation of air/ground temperatures and humidity within the vegetation canopy with the meteorological tower observation system. Summertime air temperatures within the vegetation canopy layer were 1-2$^{\circ}C$ cooler than in places with no vegetation. Due to lack of evaporation, the ground surface temperatures of footpaths were, at a midafternoon maximum, 8$^{\circ}C$ hotter than those under trees. This means that heat flows from a place with no vegetation to a vegetation canopy layer during the daytime. The heat is consumed as a evaporation latent heat. These results suggest that the extension of vegetation canopy bring about a more pleasant urban climate. Diurnal variation of air/ground temperatures and humidity within the vegetation canopy were measured with the meteorological tower observation system. According to the findings, summertime air temperatures under a vegetation canopy layer were 1-2$^{\circ}C$ cooler than places with no vegetation. Due mainly to lack of evaporation the ground surface temperature of footpaths were up to 8$^{\circ}C$ hotter than under trees during mid-afternoon. This means that heat flows from a place where there is no vegetation to another place where there is a vegetation canopy layer during the daytime. Through the energy redistribution analysis, we ascertain that the major part of solar radiation reaching the vegetation cover is consumed as a evaporation latent heat. This result suggests that the expansion of vegetation cover creates a more pleasant urban climate through the cooling effect in summer. Vegetation plays an important role because of its special properties with energy balance. Depended on their evapotranspiration, vegetation cover and water surfaces diminish the peaks of temperature during the day. The skill to make the best use of the vegetation effect in urban areas is a very important planning device to optimize urban climate. Numerical simulation study to examine the vegetation effects on urban climate will be published in our next research paper.

도시기후 형성 요소를 고려한 공간유형 분류 -창원시를 대상으로 - (The Classification of Spatial Patterns Considering Formation Parameters of Urban Climate - The case of Changwon city, South Korea -)

  • 송봉근;박경훈
    • 환경영향평가
    • /
    • 제20권3호
    • /
    • pp.299-311
    • /
    • 2011
  • The objective of this paper is to present a methodology for the classification of spatial patterns considering the parameters of urban form which play a significant role in the formation of the urban climate. The urban morphological parameters, i.e. building coverage, impervious pavement, vegetation, water, farmland and landuse types were used to classify the spatial patterns by a K-means cluster analysis. And the presented methodology was applied on Changwon city, South Korea. According to the results of cluster analysis, the total spatial patterns were classified as 24 patterns. First of all, The spatial patterns(A-1, A-2, A-3, B-1, B-2, B-3, C-1, C-2, C-3, D-1, D-2, D-3, E-1, E-2, E-3, F-1, F-2, F-3, G-1, G-2, G-3), which distributed in the rural area and the suburban area, can have the positive impacts of cold air generation and wind corridor on an urban climate environment, were distributed in the rural area. On the other hand, the spatial patterns of the downtown area including A-4, B-4, C-4 and D-4 are expected to have the negative impacts on urban climate owing to the of artificial heat emission or the wind flow obstruction. Finally, it will require the future research to analysis the climatic properties according to the same spatial patterns by the field survey.

토지이용/피복(LULC) 데이터를 이용한 도시기후구역의 적용가능성 분석 (Application and Usability Analysis of Local Climate Zone using Land-Use/Land-Cover(LULC) Data)

  • 강승원;문한솔;박혜민;정주철
    • 한국지리정보학회지
    • /
    • 제26권1호
    • /
    • pp.69-88
    • /
    • 2023
  • 효율적인 공간계획은 기후변화에 성공적으로 대응하기 위해 필요한 요소 중 하나이다. 연구자들은 흔히 토지이용 및 공간계획 연구를 수행하기 위해 LULC(Land-Use/Land-Cover) 데이터를 활용하고 있다. 그러나 LULC 데이터는 어떠한 도시 표면의 특징을 분류할 수 있는 조건이 몇 가지로 한정되어 있어 여러 도시에서 나타나는 각기 다른 도시구조를 기존 토지피복 분류법으로는 쉽게 분석할 수 없다. 이러한 토지피복 자료의 한계는 도시 열섬 분야에서 사용되는 LCZ(Local Climate Zone) 자료를 통해 극복될 것으로 보인다. 따라서 본 연구는 먼저 LCZ 데이터가 도시 열섬 분야뿐만 아니라 다른 분야에도 적용될 수 있는지를 논의하고, 두 번째로 LCZ 데이터가 기존 LULC 데이터의 문제점을 동일하게 가지는지 논의하는 것을 목적으로 한다. 연구 방법론은 크게 두 가지로 진행된다. 첫째, 문헌고찰을 통해 LCZ와 관련된 기후, 토지이용, 도시공간구조 분야의 연구를 종합하여 현재 어떤 연구에 LCZ 데이터가 활용되고 있는지, 토지이용과 도시공간구조 분야에서 어떻게 적용·활용될 수 있는지 분석한다. 다음으로 GIS 공간분석을 활용하여 LCZ 데이터도 역시 LULC 데이터에 내재한 몇 가지 오류를 공유하고 있는지에 대해 비교·분석한다.