• 제목/요약/키워드: uranium metal

검색결과 130건 처리시간 0.021초

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • 관원종;유창은;장원석;노영석;서정훈
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권4호
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

우라늄 제거를 위한 실험실 규모 동전기 장치의 개선 방안 (Improvement of Pilot-scale Electrokinetic Remediation Technology for Uranium Removal)

  • 박혜민;김계남;김승수;김완석;박욱량;문제권
    • 방사성폐기물학회지
    • /
    • 제11권2호
    • /
    • pp.77-83
    • /
    • 2013
  • 방사능 오염 토양 복원을 위해 실험실 규모의 동전기 복원장치를 제작하여 가동 하던 중 토양 내 존재하던 금속이온의 용출로 금속 산화물이 발생하여 음극의 전류 흐름을 차단하는 문제가 발생하였다. 전류의 차단으로 토양 내 우라늄 제거 능력이 상실되어 이러한 문제를 해결하는 해결 방안을 모색하여 개선된 동전기 복원 장치를 제작하였다. 개선된 실험실 규모 동전기 복원 장치를 이용하여 토양복원 실험을 25 일간 수행 하였을 때 우라늄 잔류 농도는 0.81 Bq/g으로 약 96.8%의 제거 효율을 보였으며, 초기 우라늄 농도 50 Bq/g 일 때 우라늄 규제 해제 농도인 1 Bq/g 이하로 제거 되기 까지는 34 일의 복원 기간이 필요하고, 초기 우라늄 농도 75 Bq/g, 100 Bq/g 일 때 각 42 일, 49 일이 필요한 것으로 나타났다.

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin;Dabbagh, Reza;Noroozi, Mostafa;Baradaran, Sama
    • Advances in environmental research
    • /
    • 제9권1호
    • /
    • pp.65-84
    • /
    • 2020
  • The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.

LiCl-Li$_2$O 용융염계에서 우라늄 산화물의 전기화학적 금속전환 반응 메카니즘에 관한 연구 (A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li$_2$O Molten Salt)

  • 오승철;허진목;서중석;박성원
    • 방사성폐기물학회지
    • /
    • 제1권1호
    • /
    • pp.25-39
    • /
    • 2003
  • 본 연구에서는 고온의 LiCl-Ll$_2$O 용융염계에서 우라늄 산화물의 금속전환과 Li$_2$O의 전해반응이 동시에 진행되는 통합 반응 메카니즘을 기초로 한 전기화학적 금속전환기술을 제안하였다. 본 실험에서는 전기화학적 환원반응에 의해 생성된 Li 금속이온이 음극에 전착과 동시에 우라늄 산화물과 반응하여 금속전환율 99 % 이상의 우라늄 감속을 생성하는 통합 반응 메카니즘을 확인할 수 있었다. 또한 전기화학적 금속전환기술의 공정 적용성 평가 일환으로 우라늄 산화물의 금속전환성, 반응 메카니즘 규명, Li$_2$O의 closed recycle rate 및 물질전달 특성 등의 기초 데이터를 확보하였다 향후 전기화학적 금속전환기술은 LiCl-Li 용융염계의 금속전환공정의 반응조건 제한성 해소, 금속전환율 향상 및 공정의 단순화 등의 기술성과 경제성 향상 측면에서 획기적인 방안으로 고려될 수 있을 것으로 판단된다.

  • PDF

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • 왕수균
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

킬레이팅 화합물에 의한 우라늄의 용매추출 -방사성 폐기물 처리 처분 연구(I)- (The Solvent Extraction of Uranium(VI) and Other Metal Ions with Pyrazolone Chelating Agents -The Studios on the Rad-Waste Treatment(1)-)

  • Hun Hwee Park;Nak June Sung
    • Nuclear Engineering and Technology
    • /
    • 제15권2호
    • /
    • pp.117-122
    • /
    • 1983
  • $\beta$-diketo의 관능기를 가진 1-phenyl-3-methyl-4-acyl-pyrazolone-5-one (acyl pyrazolone)이라고 이름지어진 킬레이팅 화합물은 오랫동안 동위원소 분리 및 추출에 이용되어 왔다. 새로운 acylating 물질을 사용해서 만들어진 succinyl, malenyl 그리고 phthalyl pyrazolone이 우라늄이온(VI)과 고가의 산화상태를 지니는 다른 중금속의 추출에 이용되었다. Succinyl pyrazolone이 우라늄(VI) 추출에서 매우 뛰어나다는 것이 밝혀졌으며, 대체로 카르복실 관능기를 가진 킬레이팅 화합물이 우라늄(VI) 혹은 악티나이드 계열의 중금속 추출에 매우 효과적인 것으로 나타났다.

  • PDF

PARTITIONING RATIO OF DEPLETED URANIUM DURING A MELT DECONTAMINATION BY ARC MELTING

  • Min, Byeong-Yeon;Choi, Wang-Kyu;Oh, Won-Zin;Jung, Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.497-504
    • /
    • 2008
  • In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica ($SiO_2$), calcium oxide (CaO) and aluminum oxide ($Al_2O_3$). Furthermore, calcium fluoride ($CaF_2$), magnesium oxide (MgO), and ferric oxide ($Fe_2O_3$) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding $5.5{\times}10^3$. The slag formers containing calcium fluoride ($CaF_2$) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium.

모의 금속전환체 U-Nb 합금의 공기중 산화거동 (Oxidation Behavior of Simudated Metallic U-Nb Alloys in Air)

  • 이은표;주준식;유길성;조일제;국동학;김호동
    • 방사성폐기물학회지
    • /
    • 제2권4호
    • /
    • pp.239-244
    • /
    • 2004
  • 사용후핵연료 금속전환체의 저장 안정성을 높이기 위해 금속전환체의 주성분인 금속우라늄과 산화 안정화물질로 알려져 있는 Nb을 첨가하여 모의 금속전환체 합금을 제작하였다. 모의 금속전환체 합금을 $200{\sim}300^{\circ}C$ 온도구간에서 순수 산소분위기로 산화시험을 수행하고 무게증가(wt%)를 열중량 분석기(TGA)로 측정하였다. 산화 실험결과 U-Nb 모의 금속전환체는 순수 금속우라늄에 비하여 상당한 산화 저항성을 가졌다. U-Nb 합금의 경우 Nb의 함량 1, 2, 3, 4 wt%에 따라 각각 온도가 $200^{\circ}C$일 경우에는 1.61, 7.78, 11.76, 20.14배 , $250^{\circ}C$에서 1.45, 5.98, 10.08, 11.15배, $300^{\circ}C$에서 1.33, 4.82, 8.87, 6.84배 순수 금속우라늄에 비해 산화저항성이 향상되는 것으로 나타났다. 또한 U-1~4 wt%Nb 합금에 대한 활성화에너지는 17.13~21.92 kcal/mol 로 나타났다.

  • PDF