• Title/Summary/Keyword: uranium concentration

Search Result 201, Processing Time 0.023 seconds

Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces (경상남북도 지하수 중 자연방사성물질 우라늄과 라돈의 산출특징과 함량분포에 대한 수리지화학적 연구)

  • Cho, Byong Wook;Choo, Chang Oh;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Kim, Moon Su
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.551-574
    • /
    • 2014
  • The occurrence, distribution, and hydrogeochemical characteristics of uranium and radon in groundwater within different lithologies in Gyeongnam and Gyeongbuk provinces were investigated. A total of 201 groundwater samples from sedimentary rocks taking a large portion of the geology and from igneous rocks taking a small portion of the geology were analyzed and examined using factor analysis. Their radionuclide levels were used to construct detailed concentration maps. The groundwater types, defined using a Piper diagram, are mainly Ca-$HCO_3$ with less Na-$HCO_3$. Among the samples, one site exceeds $30{\mu}g/L$ of uranium (i.e., the maximum contaminant level of the USEPA) and three sites exceed 4,000 pCi/L of radon (i.e., the alternative maximum contaminant level). No samples were found to exceed the 15 pCi/L level of gross alpha or the 5 pCi/L level of radium. The concentration of uranium ranges from 0.02 to $53.7{\mu}g/L$, with a mean of $1.56{\mu}g/L$, a median of $0.47{\mu}g/L$, and a standard deviation of $4.3{\mu}g/L$. The mean concentrations of uranium for the different geological units increase in the following order: Shindong Group, Granites, Hayang Group, Yucheon Group, and Tertiary sedimentary rocks. The concentration of radon ranges from 2 to 8,740 pCi/L, with an mean of 754 pCi/L, a median of 510 pCi/L, and a standard deviation of 907 pCi/L. The mean radon concentrations for the investigated geological units increase in the following order: Granites, Yucheon Group, Tertiary sedimentary rocks, Hayang Group and Shindong Group. According to the factor analysis for each geological unit, uranium and radon behave independently of each other with no specific correlation. However, radionuclides show close relationships with some components. Regional investigations of radionuclides throughout the country require an integrated approach that considers the main lithological units as well as administrative districts.

Characteristics of Occurrence and Distribution of Natural Radioactive Materials, Uranium and Radon in Groundwater of the Danyang Area (단양지역 지하수중 자연방사성물질 우라늄과 라돈의 산출과 분포특징)

  • Cho, Byong Wook;Kim, Moon Su;Kim, Tae Seung;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.477-491
    • /
    • 2013
  • Natural radionuclides in groundwater in the Danyang area were investigated to characterize the behaviors of uranium and radon with respect to lithology and physico-chemical components, which can aid our understanding of their occurrence, properties, and origins. To this end, a total of 100 groundwater samples were collected and analyzed, and radionuclide levels were used to construct detailed concentration maps. The water type of the groundwater, assessed using a Piper diagram, is mainly Ca-Na-$HCO_3$. The concentrations of uranium range from 0.02 to $251.0{\mu}g/L$ (average, $3.85{\mu}g/L$) and only 1% exceed USEPA's MCL (Maximum Contaminant Level). Uranium is enriched in groundwaters of Cretaceous granites and Precambrian metamorphic rocks, whereas it is depleted in groundwaters of sedimentary rocks. The concentrations of radon range from 13 to 28,470 pCi/L (average, 2397 pCi/L). Only 15% of the samples exceed AMCL (Alternative Maximum Contaminant Level) of 4000 pCi/L. The radon concentration is highest in groundwater of Cretaceous granites and lowest in groundwater of sedimentary rocks. In conclusion, the distribution and occurrence of radionuclides are intimately related to the basic geological characteristics of the rocks in which the radiogenic minerals are primarily contained. The behavior of uranium is only weakly related to that of radon (correlation coefficient = 0.15). There are also weak correlations between radionuclides and the main chemical components, pH, EC, Eh, and well depth. Of note, the correlation coefficient between radon and $SiO_2$ is 0.68, and that between radon and $HCO_3$ is -0.48. Factor analysis shows that radionuclides behave somewhat independently of each other because there are no significant factors that control the behavior of chemical components as well as radionuclides. The detailed concentration maps during this study will be used to establish useful database of radionuclide distribution and geological properties throughout Korea.

Radiological hazards assessment associated with granitoid rocks in Egypt

  • Ahmed E. Abdel Gawad;Masoud S. Masoud;Mayeen Uddin Khandaker;Mohamed Y. Hanfi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2239-2246
    • /
    • 2024
  • The present study aimed to assess the radioactive hazards associated with the application of granitoid rocks in building materials. An HPGe spectrometer was used to detect the levels of the radioactive elements uranium-238, thorium-232, and potassium-40 in the granitoid rocks. The results showed that the levels of these elements were lower (38.32 < 33 Bq kg-1), comparable (47.19-45 Bq kg-1) and higher (992.26 ≫> 412 Bq kg-1) than the worldwide limits for 238U, 232Th, and 40K concentration, respectively. The exposure to gamma radiation of granitoid rocks was studied by various radiological hazard variables like the absorbed dose rate (Dair), the outdoor and indoor annual effective dose (AEDout and AEDin), and excess lifetime cancer risk (ELCR). A variety of statistical methods, including Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) was used, to study the relationship between the radioactive elements and the radiological hazards. According to statistical analysis, the main radioactive risk of granitoid rocks is contributed to by the elements uranium-238, thorium-232, and potassium-40. Granitoid rocks can be applied in building materials, but under control to prevent risk to the public.

International Trends for Radionuclides Management in Drinking water (선진 외국에서의 먹는물 중 방사성물질 관리동향)

  • Park, Sun-Ku;Son, Ji-Hwan
    • Journal of Environmental Policy
    • /
    • v.5 no.2
    • /
    • pp.49-67
    • /
    • 2006
  • The radionuclides in drinking water have been regulated in many countries. In USA, the regulation has been revised for over 30 years since radionuclides have been regulated under Safe Drinking Water Act(SDWA) from 1974. Today, USEPA is finalizing maximum contaminant level goal(MCLG) of zero for radionuclides, maximum contaminant level(MCL) and alternative maximum contaminant level(AMCL) of 300pCi/L and 4,000pCi/L for radon respectively, MCLs of $30{\mu}g/L$ for uranium, and MCLs of 5pCi/L for combined radium 226 and 228. In Canada, Maximum Acceptable Concentration(MAC) value for uranium is $20{\mu}g/L$. WHO revised the guideline value of uranium and radon to $15{\mu}g/L$ and 100Bq/L in september 2004, respectively. On this survey, it has been found that international regulations for radionuclides in drinking water have been established and improved steadily on the knowledge basis from the past decades' studies.

  • PDF

Prediction of the Dynamic Adsorption Behaviors of the Uranium and Cobalt Ions in a Fixed Bed by Surface Modified Activated Carbon (표면개질 활성탄을 이용한 고정층에서 우라늄 및 코발트 이온의 동적 흡착거동 모사)

  • Geun-IL Park;Jung-Won Lee;Kee-Chan Song;In-Tae Kim;Kwang-Wook Kim;Myung-Seung Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.81-92
    • /
    • 2003
  • In order to predict the dynamic behaviors of uranium and cobalt in a fixed bed at various influent pH values of liquid waste, the adsorption system is regarded as a multi-component adsorption between each ionic species in the solution. Langmuir isotherm parameters of each species were extracted by incorporating equilibrium data with the solution chemistry of the uranium and cobalt using IAST. Prediction results were in good agreement with the experimental data, except for a high concentration and pH. Although there was some limitations in predicting the cobalt adsorption, this method may be useful in analyzing a complex adsorption system where various kinds of ionic species exist in a solution.

  • PDF

Determination of Uranium and Thorium in Natural Ground Water by Reversed Phase Liquid Chromatography (역상액체크로마토그래피에 의한 지하수 중 U 및 Th의 분리정량)

  • Lee, Chang Heon;Jo, Gi Su;Seo, Mu Yeol;Lee, Won
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.7
    • /
    • pp.502-508
    • /
    • 1994
  • The measurement of trace amounts of uranium(VI) and thorium(VI) in the solutions containing high concentration of dissolved salts was carried out. The procedure using reversed phase liquid chromatography with trace enrichment techniques has been developed to cope with the high salt content of the samples. 2 ml of sample were passed through a small C_{18}$ reversed phase enrichment column with ${\alpha}$-HIBA eluent (0.11 M, pH 5.5) where the uranium and thorium were separated from other constituents and concentrated. The uranium and thorium were then backflushed from the column onto a deactivated C_{18}$ reversed phase analytical column where furthe separation was achieved with a mixed eluent (pH3.0, 0.17M ${\alpha}$-HIBA/0.0038 M 1-pentanesulfonate). The separated species were determined spectrophotometrically by postcolumn reaction with Arsenazo III, the chromogenic reagent. Detection limits were found within 1 ppb range for both species.

  • PDF

Adsorption Characteristics of Uranium (VI) Ion on OenNdien Resin with Styrene Hazardous Material (스타이렌 위험물을 포함한 OenNdien 수지에 의한 우라늄(VI) 이온의 흡착 특성)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.697-702
    • /
    • 2011
  • Ion exchange resins have been synthesized from chloromethylated styrene-1,4-divinylbenzene (DVB) with 1%, 2%, 5% and 15%-crosslinkage and macrocyclic ligand of $OenNdien-H_4$ by copolymerization. The adsorption characteristics of uranium (${UO_2}^{2+}$), potassium ($K^+$) and neodymium ($Nd^{3+}$) metallic ions have been investigated. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, and crosslinkage on adsorption of metallic ions were also studied. The uranium ion showed the fast adsorption on the resins above pH 3. The optimum equilibrium time for the adsorption of metallic ions was about two hours. The adsorption selectivity determined in methanol solution was in increasing order uranium (${UO_2}^{2+}$) > potassium ($K^+$) > neodymium ($Nd^{3+}$) ion. Moreover, the adsorption was increased with the crosslinkage concentration in order of 1%, 2%, 5% and 15%-crosslinkage resin.

Uranium and Radon Concentrations in Groundwater of the Daejeon Granite Area: Comparison with Other Granite Areas (대전 화강암지역 지하수의 우라늄과 라돈 함량: 다른 화강암지역과의 비교)

  • Yun, Uk;Kim, Moon Su;Jeong, Do Hwan;Hwang, Jae Hong;Cho, Byong Wook
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.631-643
    • /
    • 2018
  • Uranium and radon concentrations in groundwater from 80 wells from Daejeon area were measured to determine the range of concentrations according to the geology. The median uranium content of groundwater was $11.14{\mu}g/L$ for the two-mica granite, $0.90{\mu}g/L$ for the biotite granite, and $0.47{\mu}g/L$ for the Ogcheon group. The median radon content of groundwates was 114.3 Bq/L for the two-mica granite, 61.6 Bq/L for the biotite granite, and 42.2 Bq/L for the Ogchon group, respectively. The uranium content of two-mica granite is 3.78 mg/ kg, which is slightly higher than that of biotite granite 3.20 mg/kg. However, the uranium content in groundwatewr of two-mica granite groundwater is much higher than that of biotite granite. This can be explained by the fact that the two-mica granite is vulnerable to weathering than biotite granite, so uranium in mineral is easily leached into groundwater. The exceeding rate of samples having uranium content above $30{\mu}g/L$ in granite area was 23.8%, which is higher than that of 6.7% in Jurassic granite in Korea. On the other hand, the exceeding rate of samples having radon content above 148 Bq/L in granite rate area was 31.0% which is similar to that of Jurassic granite area of 31.7%.

Derivation of An Empirical Formula for Determining Water Content of Mixed Uranyl Nitrate-Thorium Nitrate Solutions (질산(窒酸)우라늄-질산(窒酸)토륨 혼합용액중(混合溶液中)의 물함량(含量) 결정식(決定式) 유도(誘導))

  • Min, Duck-Kee;Choi, Byung-Il;Ro, Seung-Gy;Eom, Tae-Yoon;Kim, Zong-Goo
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.22-28
    • /
    • 1986
  • Densities of a large number of mixed uranyl nitrate-thorium nitrate solutions were measured with pycnometer. By the least squares analysis of the experimental result, an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions as functions of uranium concentration, thorium concentration and nitric acid normality is derived; $W=1.0-0.358\;C_u-0.4538\;C_{Th}-0.0307\;H^+$ where $W,\;C_u,\;C_{Th},\;and\;H^+$ stand for water content(g/cc), uranium concentration (g/cc), thorium concentration (g/cc), and nitric acid normality, respectively. Water contents of the mixed uranyl nitrate-thorium nitrate solutions are calculated by using the empirical formula, and compared with the values calculated by Bouly's equation in which an additional data, solution density, is required. The two results show good agreements within 2.7%.

  • PDF

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System (동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술)

  • Kim, Wan-Suk;Kim, Seung-Soo;Kim, Gye-Nam;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.