• Title/Summary/Keyword: upstream waves

Search Result 49, Processing Time 0.022 seconds

A Study on Upstream Waves for an Advancing Arbitrary Hull Shape in Restricted Water Channel

  • Kim, Sung-Young;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.24-37
    • /
    • 2000
  • The purpose of this paper is to study the upstream waves in front of an advancing arbitrary hull shape in a restricted water channel. Conventionally, in a restricted water channel, shallow water effects are amplified because of the finite water depth and width. When the effects of shallow water and the restricted channel width are severe, upstream waves propagate forward from the fore-body of the advancing hull. In this study, numerical simulations are carried out for the relevant analysis of the flow phenomena by the draft variation of advancing hull in a restricted water channel. Numerical simulations are done with a finite-difference method based on the MAC scheme in a rectangular grid system.

  • PDF

A Nonlinear Theory for Wave Resistance and Squat of a Slender Ship Advancing Near the Critical Speed in Restricted Water (제한수로에서 임계속도로 항진하는 선박의 조파저항, 침하 및 종경사에 대한 비선형 해석)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.3-13
    • /
    • 1989
  • In recent towing tank experiments, it has been observed that a ship moving near the critical speed $\sqrt{gh}$(g=gravitational acceleration, h=water depth) radiates solitons upstream in an almost periodic manner. As a ,consequence, the ship experiences considerable changes in resistance, trim and sinkage, or better known as squat. Mei and Choi(1987) developed a nonlinear theory for a slender ship by using the method of matched asymptotic expansions. For a certain class of channel width and ship slenderness, they found that the waves generated can be described by an inhomogeneous Korteweg-de Vries(KdV) equation. The leading-order solution properly predicts solitons propagating upstream, but it fails to render three-dimensional waves in the wake. In this paper a new approach has been made by choosing a different class of channel width and ship slenderness. The wave equation in the farfield turns out to be a homogeneous Kadomtsev-Petviashvili(KP) equation, which predicts solitons upstream and three-dimensional waves in the wake. Numerical results for the wave resistance, sinkage and trim reflect the experimentally identified phenomena.

  • PDF

SYMMETRIC SURFACE WAVES OVER A BUMP

  • Choi, J.W.;An, Daniel;Lim, Chae-Ho;Park, Sang-Ro
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.1051-1060
    • /
    • 2003
  • We study the surface waves of an incompressible fluid passing over a small bump. A forced KdV equation for surface wave is derived without assuming that flow is uniform at far upstream. New types of steady solutions are discovered numerically. Two new cut off values of Froude number are found, above the larger of which two symmetric solutions exist and under the smaller of which two different symmetric solutions exist.

Statistical Comparison of ULF wave Power of Magnetic field between the upstream solar wind and the magnetosheath: THEMIS observations

  • Park, Mi-Young;Kim, Hee-Jeong;Lee, Dae-Young;Kim, Kyung-Chan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.96.2-96.2
    • /
    • 2012
  • We statistically examined ULF Pc 3-5 wave power in the regions of undisturbed upstream solar wind, quasi-parallel shock (and foreshock), quasi-perpendicular shock, and the magnetosheath to understand how and to what extent the wave power changes as the solar wind propagates to the magnetosheath. For this study, we used the magnetic field data from the THEMIS spacecraft and Wind (as shifted to the bow shock nose) for May-November in 2008 and 2009. The statistical results show that, in the case of the Pc5 wave power, the sheath power is roughly proportional to the upstream power for both quasi-parallel (and foreshock) and quasi-perpendicular shock regions. Also we identified undisturbed upstream condition from WIND as being well away from foreshock region, and found that the sheath power can be larger for quasi-parallel shock region by a factor of 5-15 than for quasi-perpendicular shock region. In the cases of Pc 3 and Pc4 waves, we found the higher sheath power when associated with the foreshock than with the quasi-perpendicular shock region.

  • PDF

Phase criterion of the feedback cycle of edgetones (쐐기소리의 되먹임 사이클의 위상조건)

  • Gwon, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1106-1113
    • /
    • 1996
  • The phase criterion of the feedback cycle of low-speed edgetones has been obtained using the jet-edge interaction model which is based on the substitution of an array of dipoles for the reaction of the wedge to the impinging jet. The edgetone is produced by the feedback loop between the downstream-convected sinuous disturbance and upstream-propagating waves generated by the impingement of the disturbance on the wedge. By estimation of the phase difference between the downstream and the upstream disturbances, the relationship between the edge distance and the wavelength is obtained according to the phase-locking condition at the nozzle lip. With a little variation depending on the characteristics of jet-edge interaction, the criterion can be approximated as follows: h/.LAMBDA. + h/.lambda. = n - 1/4, where h is the stand-off distance between the nozzle lip and the edge tip, .LAMBDA. is the wavelength of downstream-convected wave, .lambda. is the wavelength of the upstream-propagating acoustic wave and n is the stage number for the ladder-like characteristics of frequency. The present criterion has been confirmed by estimating wavelengths from available experimental data and investigating their appropriateness. The above criterion has been found to be effective up to 90.deg. of wedge angle corresponding to the cavitytones.

The Interaction Between Modules Caused by Thermal Choking in a Supersonic Duct (덕트내 초음속 유동에서 열폐색에 의한 모듈 간의 간섭)

  • Kim, Jang-Woo;Koo, Kyung-Wan;Han, Chang-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.109-115
    • /
    • 2007
  • Airframe-integrated Scramjet engines of NASA Langley type consist of a compressor, a combustion chamber and a nozzle. When some disturbances occur in one module of the engine, its influences are propagated to other modules. In this study, it is investigated numerically how shock waves were caused by thermal choking in one module propagate upstream and how they influence adjacent modules. The calculations are carried out in 2-dimensional supersonic viscous flow model using explicit TVD scheme in generalized coordinates. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. This moving shock wave formed one module blocks the flow coming into the adjacent modules, which makes the modules unstarted.

Mean Flow Velocity Measurement Using the Sound Field Reconstruction (음장 재구성에 의한 관내 평균유속 측정)

  • Kim, Kun-Soon;Cheung, Wan-Sup;Kwon, Hyu-Sang;Park, Kyung-Am;Paik, Jong-Seung;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.924-929
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity over the cross sectional area of the pipe using sound field reconstruction. When fluid flows in the pipe and two plane waves propagate oppositely through the medium, the flow velocity causes the change of wave number of the plane waves. The wave number of the positive going plane wave decreases and that of negative going one increases in comparison to static medium in the pipe. Theoretical backgrounds of this method are introduced in detail and the measurement of mean flow velocity using the sound field reconstruction is not affected by velocity profile upstream of microphones.

Thermodynamic Study on the Limit of Applicability of Navier-Stokes Equation to Stationary Plane Shock-Waves (정상 평면충격파에 대한 Navier-Stokes 방정식의 적용한계에 관한 열역학적 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.409-414
    • /
    • 1996
  • The limit of applicability of Navier-Stokes equation to stationary plane shock-waves is examined by using the principle of minimum entropy production of linear irreversible thermodynamics. In order to obtain analytic results, the equation is linearized near the equilibrium of downstream. Results show that the solution of Navier-Stokes equation which fits the boundary condition of far downstream flow is consistent with the thermodynamic requirement within the first order when the solution is expanded around the M=1, where M is the Mach number of upstream speed.

  • PDF

Re-acceleration of Nonthermal Particles at Weak Cosmological Shock Waves

  • Kang, Hye-Sung;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2011
  • Shock waves form in the intergalactic medium as a consequence of accretion, merger, and turbulent motion during the structure formation of the universe. They not only heat gas but also govern non-thermal processes through the acceleration of cosmic rays (CRs), production of magnetic fields, and generation of vorticity. We examine diffusive shock acceleration of the pre-existing as well as freshly injected populations of nonthermal, CR particles at weak cosmological shocks. Since the injection is extremely inefficient at weak shocks, the pre-existing CR population dominates over the injected population. If the pressure due to pre-existing CR protons is about 5 % of the gas thermal pressure in the upstream flow, the downstream CR pressure can absorb typically a few to 10 % of the shock ram pressure at shocks with the Mach number M<3. Yet, the re-acceleration of CR electrons can result in a substantial synchrotron emission behind the shock. The implication of our findings for observed bright radio relics is discussed.

  • PDF

Shock wave instability in a bent channel with subsonic/supersonic exit

  • Kuzmin, Alexander
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • Two- and three-dimensional turbulent airflows in a 9-degrees-bent channel are studied numerically. The inner surfaces of upper and lower walls are parallel to each other upstream and downstream of the bend section. The free stream is supersonic, whereas the flow at the channel exit is either supersonic or subsonic depending on the given backpressure. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver ANSYS CFX. The solutions reveal instability of formed shock waves and a flow hysteresis in considerable bands of the free-stream Mach number at zero and negative angles of attack. The instability is caused by an interaction of shocks with the expansion flow formed over the convex bend of lower wall.