• Title/Summary/Keyword: upstream water level

Search Result 274, Processing Time 0.019 seconds

Variation of Water Level on the Upstream Gauging Station by Operation of the Drainage Sluice Gate of Geumgang Estuary Dam (금강하구둑 배수갑문 조작에 의한 상류수역의 수위변동)

  • Park, Seung-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.15-24
    • /
    • 2005
  • The normalization on the characteristics of water level change at the upstream gauging station was attempted according to the operation of drainage sluice gate of the Geumgang estuary dam. The characteristics were normalized by the analysis of water level change and by the linear-regression of the water level data measured at the inner station of Geumgang estuary dam and upstream gauging station. The results of normalization may be referred to the management of Geumgang estuary lake, the operation of pumping and drainage stations in the shore of the lake. The mean response time of water level change on Ibpo, Ganggyeong and Gyuam water level station were 39,81 and 160 minutes, when sluice gate was opened respectively. The mean velocity of surface wave, the mean displacement of water level change, the mean time of water level change and the mean rate of water level change varied largely depending on the location of gauging station and the characteristics of stream section of the water level gauging station.

Prediction of Water Level at Downstream Site by Using Water Level Data at Upstream Gaging Station (상류 수위관측소 자료를 활용한 하류 지점 수위 예측)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, the overseas construction market has been actively promoted for about 10 years, and overseas dam construction has been continuously performed. For the economic and safe construction of the dam, it is important to prepare the main dam construction plan considering the design frequency of the diversion tunnel and the cofferdam. In this respect, the prediction of river level during the rainy season is significant. Since most of the overseas dam construction sites are located in areas with poor infrastructure, the most efficient and economic method to predict the water level in dam construction is to use the upstream water level. In this study, a linear regression model, which is one of the simplest statistical methods, was proposed and examined to predict the downstream level from the upstream level. The Pyeongchang River basin, which has the characteristics of the upper stream (mountain stream), was selected as the target site and the observed water level in Pyeongchang and Panwoon gaging station were used. A regression equation was developed using the water level data set from August 22th to 27th, 2017, and its applicability was tested using the water level data set from August 28th to September 1st, 2018. The dependent variable was selected as the "level difference between two stations," and the independent variable was selected as "the level of water level in Pyeongchang station two hours ago" and the "water level change rate in Pyeongchang station (m/hr)". In addition, the accuracy of the developed equation was checked by using the regression statistics of Root Mean Square Error (RMSE), Adjusted Coefficient of Determination (ACD), and Nach Sutcliffe efficiency Coefficient (NSEC). As a result, the statistical value of the linear regression model was very high, so the downstream water level prediction using the upstream water level was examined in a highly reliable way. In addition, the results of the application of the water level change rate (m/hr) to the regression equation show that although the increase of the statistical value is not large, it is effective to reduce the water level error in the rapid level rise section. Accordingly, this is a significant advantage in estimating the evacuation water level during main dam construction to secure safety in construction site.

A Study of the Seepage through Sand-Constructed Model Dams. (모래로 축조된 댐 모형의 침투에 관한 연구(I))

  • 신방웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.2
    • /
    • pp.64-82
    • /
    • 1980
  • The aim of this thesis, when water permeates dam, is to study the shape of seepage line and seepage quantity. As for the process, various sand model dams of same capacity were constructed in the water tank : they are a central, middle, inclined, up and down stream point of which is paralled, and filter-installed types. And the slope of seepage line and seepage quantity in these various models for experiment were measured, observed data were analyzed, and several formulas which already published were compared and examined. As for the shape of seepage line, the relation between upstream water level and exit: slope of seepage line, near the entrance and exit point, geometrically similar model, and the shape of seepage line filter-installed were examined. As regards to the seepage quantity, several formulas which already published and testing result values were compared and examined, and relation with the slope of seepage line, the seepage quantity, the slope of upstream point, and the upstream water level were mutually studied. Particulary, when horizontal filter was installed, propriety of the existing formulas for effective filter length w as examined, and the relative position of exit point in various. conditions was also studied.

  • PDF

Hydraulic Model Experiment for Field Application of Iceharbor-type Precast Fishway (조립식 아이스하버식 어도의 현장 적용을 위한 수리모형실험)

  • Kim, Jae-Ok;Park, Sang-Hyun;Cho, Jae-Won;Hwang , Jong-Seo;Jo , Guk-Hyun;Joh , Seong-Ju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.3-14
    • /
    • 2004
  • This study was conducted to assess the possibility of the field application of the iceharbor-type precast fishway. When overflow depth of weir is 4.0 cm in model fishway, upper part velocities appear appropriate for upstream migration of fish and the lowest overflow wall (right line) in lower part has shown velocity distribution more or less inadequate for upstream migration. Except that right line, left and middle line revealed that velocities are appropriate for upstream migration of fish. Therefore, we concluded that this fishway owing to be not broad growth width of overflow velocities according to increasing discharges can correspond to variation of water level. Also We consider that various velocities in fishway were effective, because slow velocity line can guide flow for upstream migration. For low flow, the arrangement of different crest level or each overflow part (higher left, middle and lower right, or lower left, middle and higher right) was more effactive than unform crert level. Hole plays an important role as migration pass during drought and flood flow. Therefore, We concluded that this fishway can cope with water depth variation by various overflow wall height change and raise the field applicability with better performance hydraulically and structurally.

Analysis for the Effect of Channel Contraction for Sedimentation Reduction on the Flood Level and Bed Changes in the Lower Nakdong River (낙동강 하류의 퇴사저감을 위한 하폭축소방법이 홍수위변화 및 하상변동에 미치는 영향 분석)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.291-301
    • /
    • 2013
  • Sediment from the upstream channel has been deposited near the Nakdong River Estuary Barrage (NREB) due to the mild slope and decreased velocity. The annual mechanical dredging to ensure the flood capacity has been performed to remove the deposited sediment. However, the dredging method is not considered as an effective countermeasure due to high cost and long time to operate. Therefore, many methods for sedimentation reduction have been proposed for NREB. Especially, the channel contraction method to mitigate sedimentation problem by changing the channel geometry from 2 km to 3 km upstream of NREB has been recently suggested as an effective countermeasure. However, there is the possibility that the channel contraction method induces flood level increase compared to original condition. Therefore, it is necessary to investigate quantitatively the flood level changes in the upstream and downstream section due to the channel contraction method for NREB. In this study, water level changes by 10% channel contraction of whole width has been evaluated using the HEC-RAS model and simulated with and without channel contraction for various flood discharge. As a result, water level in the section where the channel was contracted was decreased by 0.02 m and flood level at the upstream of channel contracted was increased up to 0.015 m for the 500-year flood.

Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model (유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.

Impacts of Reforestation on Stabilization of Riverine Water Levels in South Korea

  • JAEHYUN, YOON;SAANG JOON, BAAK;MIN YOUNG, SEO;TAEJONG, KIM
    • KDI Journal of Economic Policy
    • /
    • v.44 no.4
    • /
    • pp.1-24
    • /
    • 2022
  • We investigate how reforestation contributed to stabilization of riverine water levels in South Korea. For the purpose, we estimate an equation capturing dynamic relationships among rainfall, upstream-area tree stock, and downstream water levels in three river systems of Hongcheon, Mangyeong, and Hyeongsan, using daily observations of precipitation and water levels for the period from 1985 to 2005. Simulation based on estimation results shows that increase in the tree stock in a river basin leads to a significantly suppressed peaking in riverine water levels in response to an abrupt and concentrated rain in the upstream area. For instance, an hour-long concentration of 100mm rain results in 0.7m rise in water level if the volume of growing stock is 1 million m3, whereas the rise in water level stays below 0.27m with 5 million m3 in the growing-stock volume.

Streamflow Modeling in Data-scarce Estuary Reservoir Watershed Using HSPF (HSPF 모형과 호소 물수지를 이용한 미계측 간척 담수화호 수문모델링)

  • Seong, Choung Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.129-137
    • /
    • 2014
  • This research presents an streamflow modeling approach in a data-scarce estuary reservoir watershed which has been suffered from high salinity irrigation water problem after completion of land reclamation project in South Korea. Since limited hydrology data was available on the Iwon estuary reservoir watershed, water balance relation of the reservoir was used to estimate runoff from upstream of the reservoir. Water balance components in the reservoir consists precipitation, inflow from upstream, discharge through sluice, and evaporation. Estimated daily inflow data, which is stream discharge from upstream, shows a good consistency with the observed water level data in the reservoir in terms of EI (0.93) and $R^2$ (0.94), and were used as observed flow data for the streamflow modeling. HSPF (Hydrological Simulation Program - Fortran) was used to simulate hydrologic response of upstream of the reservoir. The model was calibrated and validated for the periods of 2006 to 2007 and 2008 to 2009, respectively, showing that values of EI and $R^2$ were 0.89 and 0.91 for calibration period, 0.71 and 0.84 for validation period.

Flood Routing Using Numerical Analysis Model (수치해석모형에 의한 홍수추적)

  • 이용직;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.117-130
    • /
    • 1989
  • In this study, an implicit one-dimensional model, DWRM(Dynamic Wave Routing Model) was developed by using the four-point weighted difference method. By applying the developed model to the Keum River, the parameters were calibrated and the model applicability was tested through the comparison between observed and computed water levels. In addition, the effects of the construction of an estuary dam to the flood wave were estimated as a result of the model application. The results of the study can be summarized as follows; 1. The roughness coefficients were evaluated by comparison between observed and computed water level at Jindu, Gyuam and Ganggyeung station in 1985. The Root Mean Squares for water level differences between observed and computed values were 0.10, 0.11, 0. 29m and the differences of peak flood levels were 0.07, 0.02, 0. 07m at each station. Since the evaluated roughness coefficients were within the range of 0.029-0.041 showing the realistic value for the general condition of rivers, it can be concluded that the calibration has been completed. 2. By the application of model using the calibrated roughness coefficients, the R. M. S. for water level differences were 0.16, 0.24, 0. 24m and the differences of peak flood level were 0.17, 0.13,0.08 m at each station. The arrival time of peak flood at each station and the stage-discharge relationship at Gongju station agreed well with the observed values. Therefore, it was concluded that the model could be applied to the Keum River. 3. The model was applied under conditions before and after the construction of the estuary dam. The 50-year frequency flood which had 7, 800m$^3$/sec of peak flood was used as the upstream condition, and the spring tide and the neap tide were used as the downstream condition. As the results of the application, no change of the peak flood level was showed in the upper reaches of 19.2km upstream from the estuary dam. For areas near 9.6km upstream from the estuary dam, the change of the peak flood level under the condition before and after the construction was 0. 2m. However considering the assumptions for the boundary conditions of downstream, the change of peak flood level would be decreased.

  • PDF

Hydraulic Characteristics and Upstream Migration of Fish by the Weir Type in a Pool-Weir Fishway (階段式魚道에서 隔壁 形狀에 따른 水理學的 特性 및 魚類의 上流移動)

  • 김진홍
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.225-235
    • /
    • 1996
  • This study deals with hydraulic characteristics and their effects on upstream migration of fish by the weir type in a pool-weir fishway, and presents an optimal type of weir for an easy upstream migration. Experiment was performed to estimate hydraulic conditions by the weir type and to determine which type was good. The results showed that a rectangular weir with a small rectangular notch installed by a zig-zag type was preferable to a simple weir with no notch or to a trapezoidal weir, since it makes possible for upstream migration even when a water level draws down and moreover, it makes falling flow through a notch which facilitates upstream migration. It was proposed that the notch must be designed that the flow situation may keep the streaming flow so long as the maximum flow velocity does not exceed the critical swiming velocity, i.e., the dimensionless flow rate may exist whthin the range of 0.27 and 0.41.

  • PDF