• Title/Summary/Keyword: upright control

Search Result 84, Processing Time 0.029 seconds

A Study on Aircraft Sensitivity Analysis for C.G Variation of Longitudinal Axis (항공기 세로축 무게중심의 변화에 따른 민감도 해석에 관한 연구)

  • 김종섭
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.83-91
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in longitudinal axis to achieve performance enhancements and improve stability. The flight control law of T-50 advanced trainer employs RSS concept in order to improve the aerodynamic performance and guarantee aircraft stability. The longitudinal center of gravity(X-c.g) varies as a function of external stores, fuel state and gear position. Shifts in X-c.g relate directly to longitudinal static margin in aircraft stability. This paper deals the maximum aft X-c.g for critical aircraft loadings and checks static margin limits using sensitivity such as damping, natural frequency, gain and phase margin. And nonlinear analysis was conducted for such as short period input. And also, this paper shows the T-50 aircraft stability based on the result of high angle of attack flight such as upright and inverted departure.

Suppression of Coupled Pitch-Roll Motions using Quasi-Sliding Mode Control (준 슬라이딩 모드 제어를 이용한 선박의 종동요 및 횡동요 억제)

  • Lee, Sang-Do;Cuong, Truong Ngoc;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper addressed the problems of controlling the coupled pitch-roll motions in a marine vessel exposed to the regular waves in the longitudinal and transversal directions. Stabilization of the pitch and roll motions can be regarded as the essential task to ensure the safety of a ship's navigation. One of the important features in the pitch-roll motions is the resonance phenomena, which result in unexpected large responses in terms of pitch and roll modes in some specific conditions. Besides, owing to its inherent characteristics of coupled combination and nonlinearity of restoring terms, the vessel shows various dynamical behaviors according to the system parameters, especially in the pitch responses. Above all, it can be seen that suppression of pitch rate remains the most significant challenge to overcome for ship maneuvering safety studies. To secure the stable upright condition, a quasi-sliding mode control scheme is employed to reduce the undesirable pitch and roll responses as well as chattering elimination. The Lyapunov theory is adopted to guarantee the closed stability of the pitch-roll system. Numerical simulations demonstrate the effectiveness of the control scheme. Finally, the control goals of state convergences and chattering reduction are effectively realized through the proposed control synthesis.

Verifying the Suitability or Unsuitability of the Opening Force Criteria Applied to Air Pressurized Access Door to a Smoke Control Zone (급기 가압 제연구역 출입문에 적용되는 개방력 기준의 적합성 여부에 관한 연구)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5820-5825
    • /
    • 2014
  • The aim of this study was to verify the suitability or unsuitability of Korean body types by measuring the opening force criteria of an air pressurized access door to a smoke control zone. The opening force criteria were verified by comparing the NFSC 501A, NFPA 92A and BS-EN 12101-6 based on the body standards information from the Korean Agency for Technology and Standards. When measuring the opening forces, the posture of the body should be standing upright and pushing an access door with the right hand, which is a criterion for designing doors. As a result of analyzing the actual measurement results, the pushing force of men and women in their 30's was the maximum value and the forces in those in their 60's was the minimum value. In addition, the deviations in the pushing forces varied considerably. As a result of comparing the NFSC 501A, the men showed lower values than the criteria in every gender and age variable except for the 20's, 30's and 50's variable. A comparison of the criteria of NFPA 92A showed that the mean of the measured values from every gender and age was also lower than the criteria. In addition, when comparing the criteria of BS-EN 12101-6, it was found that the men in every age variable were higher than the criteria. On the other hand, the women in every age variable were lower than the criteria. Therefore, considering the Korean body type against the Western body type, it was decided that the opening force of an access door to a smoke control area to make a downward adjustment should be 110 N in the local criteria. Furthermore, the criteria should consider the characteristics of buildings and users because an optional application of the international standard is not necessarily suitable for local situations.

Muscle-Induced Accelerations of Body Segments (근육의 힘이 신체 각 부분의 가속도에 미치는 영향)

  • Khang, Gon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1967-1974
    • /
    • 1991
  • When the functional electrical stimulation is employed to recover mobility to the plegic, it is very important to understand functions of the selected muscles. I have investigated how a muscle acts to accelerate the body segments, since the body segements are connected by joints so that contraction of a muscle not only rotates the segments to which it is attached but also causes other segments to rotate by creation a reaction force at every joint, which is called the inertial coupling. I found that a single-joint muscle always acts to accelerate the spanned joint in the same direction as the joint torque produced by the muscle. However, a double-joint muscle can act to accelerate the spanned joint in the opposite direction to the joint torque produced by the muscle depending on (1) the body position, (2) the body-segmental parameters, and (3) the type of the movement. Investigating the condition number of the inertia matrix of the body-segmental model gave us some insights into how controllable the body-segmental system is for different values of the factors mentioned above. The results suggested that the upright position is the most undesirable position to independently control the three segments(trunk, thigh and shank) and that the controllability is the most sensitive to variation of the shank length and the trunk mass, which implies that accuracy is required particularly when we estimate these two body-segmental parameters before the paralyzed muscles are innervated by using electrical stimulation.

Beach-chair lateral traction position using a lateral decubitus distracter in shoulder arthroscopy

  • Kim, Kyung-Cheon;Rhee, Kwang-Jin;Shin, Hyun-Dae;Byun, Ki-Yong
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2008.03a
    • /
    • pp.164-164
    • /
    • 2008
  • The beach-chair traction position is designed to allow the use of traction while allowing the surgeon to orient the shoulder in an upright position and convert to an open procedure, if necessary. The patient is placed in the beach-chair position under general anesthesia. A three-point shoulder holder (Arthrex, Naples, Florida) is attached to the rail of the operating table on the same side as the surgeon, whereas it is placed on the side opposite the surgeon in the lateral decubitus position. A shoulder traction and rotation sleeve (Arthrex) are affixed to the arm following the manufacturer's instructions. Positioning the thumb toward the closed side of the sleeve ensures a field for the anterior portion of the rotator cuff and prevents the tendency of the suspension apparatus to place the arm in internal rotation. The arm is maintained in 30 to 40 degree abduction and 30 to 40 degree flexion by controlling the length and height of the bar and the location of the universal clamp. The universal clamp allows multiple planes of adjustment to control abduction and forward movement of the arm. The sleeve is attached to the longitudinal traction cable using a sterile hook, and a lateral strap is secured around the proximal portion of the sleeve to the overhead traction cable to ensure a field for glenohumeral reconstruction. The use of a lateral strap permits ideal shoulder positioning for improved access to the anterior and inferior glenohumeral joint. The lateral strap can be released or removed to widen the subacromial space during subacromial decompression or rotator cuff repair. A 10-lb weight is attached to the longitudinal traction cable for an average-sized person.

  • PDF

A Study of preservation of health in the Dongyi Soose Bowon Sasang Chobonguen (『동의수세보원사상초본권(東醫壽世保元四象草本卷)』에서의 양생(養生)에 관(關)한 고찰(考察))

  • Kim, Sun-min;Song, Il-byung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.12 no.1
    • /
    • pp.101-109
    • /
    • 2000
  • Purpose This study is carried out to investigate the way of preservation of health. Method I studied the archives of the preventive way of thinking and upright habit of life expressed in the Dongyi Suse Bowon Sasang Chobonguen Result & Conclusion 1. For taking car of one's health and keeping quiet of emotion is more important than drug, we have to be cautious in extravagant use of drug. 2. For the preservation of health, it is recommended to observe moderation in liquor, sex, property, authority and discretion. 3. It is necessary for a man to do his best and to control emotion. 4. It had better engage in philanthropy than egoism.

  • PDF

Measurement of Fine 6-DOF Displacement using a 3-facet Mirror (삼면반사체를 이용한 6자유도 미소 변위 측정)

  • 박원식;조형석;변용규;박노열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.50-50
    • /
    • 2000
  • In this paper, a new measuring system is :proposed which can measure the fine 6-DOF displacement of rigid bodies. Its measurement principle is based on detection of laser beam reflected from a specially fabricated mirror that looks like a triangular pyramid having an equilateral cross-sectional shape. The mirror has three lateral reflective surfaces inclined 45$^{\circ}$ to its bottom surface. We call this mirror 3-facet mirror. The 3-facet mirror is mounted on the object whose 6-DOF displacement is to be measured. The measurement is operated by a laser-based optical system composed of a 3-facet mirror, a laser source, three position-sensitive detectors(PSD). In the sensor system, three PSDs are located at three corner points of a triangular formation, which is an equilateral triangular formation tying parallel to the reference plane. The sensitive areas of three PSDs are oriented toward the center point of the triangular formation. The object whose 6-DOF displacement is to be measured is situated at the center with the 3-facet mirror on its top surface. A laser beam is emitted from the laser source located at the upright position and vertically incident on the top of the 3-fatcet mirror. Since each reflective facet faces toward each PSD, the laser beam is reflected at the 3-facet mirror and splits into three sub-beams, each of which is reflected from the three facets and finally arrives at three PSDs, respectively. Since each PSD is a 2-dimensional sensor, we can acquire the information on the 6-DOF displacement of the 3-facet mirror. From this principle, we can get 6-DOF displacement of any object simply by mounting the 3-facet mirror on the object. In this paper, we model the relationship between the 6-DOF displacement of the object and the outputs of three PSDs. And, a series of simulations are performed to demonstrate the effectiveness of the proposed method. The simulation results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects.

  • PDF

Effects of Head Posture on the Rotational Torque Movement of Mandible in Patients with Temporomandibular Disorders (두경부 위치에 따른 측두하악장애환자의 하악 torque 회전운동 분석)

  • Park, Hye-Sook;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.2
    • /
    • pp.173-189
    • /
    • 2000
  • The purpose of this study was to evaluate the effect of specific head positions on the mandibular rotational torque movements in maximum mouth opening, protrusion and lateral excursion. Thirty dental students without any sign or symptom of temporomandibular disorders(TMDs) were included as a control group and 90 patients with TMDs were selected and examined by routine diagnostic procedure for TMDs including radiographs and were classified into 3 subgroups : disc displacement with reduction, disc displacement without reduction, and degenerative joint disease. Mandibular rotational torque movements were observed in four head postures: upright head posture(NHP), upward head posture(UHP), downward head posture(DHP), and forward head posture(FHP). For UHP, the head was inclined 30 degrees upward: for DHP, the head was inclined 30 degrees downward: for FHP, the head was positioned 4cm forward. These positions were adjusted with the use of cervical range-of-motion instrumentation(CROM, Performance Attainment Inc., St. Paul, U.S.A.). Mandibular rotational torque movements were monitored with the Rotate program of BioPAK system (Bioresearch Inc., WI, U.S.A.). The rotational torque movements in frontal and horizontal plane during mandibular border movement were recorded with two parameters: frontal rotational torque angle and horizontal rotational torque angle. The data obtained was analyzed by the SAS/Stat program. The obtained results were as follows : 1. The control group showed significantly larger mandibular rotational angles in UHP than those in DHP and FHP during maximum mouth opening in both frontal and horizontal planes. Disc displacement with reduction group showed significantly larger mandibular rotational angles in DHP and FHP than those in NHP during lateral excursion to the affected and non-affected sides in both frontal and horizontal planes(p<0.05). 2. Disc displacement without reduction group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening as well as lateral excursion to the affected and non-affected sides in both frontal and horizontal planes. Degenerative joint disease group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening, protrusion and lateral excursion in both frontal and horizontal planes(p<0.05). 3. In NHP, mandibular rotational angle of the control group was significantly larger than that of any other patient subgroups. Mandibular rotational angle of disc displacement with reduction group was significantly larger than that of disc displacement without reduction group during maximum mouth opening in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group or degenerative joint disease group during maximum mouth opening in the horizontal plane(p<0.05). 4. In NHP, mandibular rotational angles of disc displacement without reduction group were significantly larger than those of the control group or disc displacement with reduction group during lateral excursion to the affected side in both frontal and horizontal planes. Mandibular rotational angle of disc displacement without reduction group was significantly smaller than that of the control group during lateral excursion to the non-affected side in frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group during lateral excursion to the non-affected side in the horizontal plane(p<0.05). 5. In NHP, mandibular rotational angle of the control group was significantly smaller than that of disc displacement with reduction group or disc displacement without reduction group during protrusion in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of the disc displacement with reduction group or degenerative joint disease group during protrusion in the horizontal plane. Mandibular rotational angle of the control group was significantly smaller than that of disc displacement without reduction group or degenerative joint disease group during protrusion in the horizontal plane(p<0.05). 6. In NHP, disc displacement without reduction group and degenerative joint disease group showed significantly larger mandibular rotational angles during lateral excursion to the affected side than during lateral excursion to the non-affected side in both frontal and horizontal planes(p<0.05). The findings indicate that changes in head posture can influence mandibular rotational torque movements. The more advanced state is a progressive stage of TMDs, the more influenced by FHP are mandibular rotational torque movements of the patients with TMDs.

  • PDF

AN EXPERIMENTAL STUDY ON THE DYNAMIC 700TH MOVING EFFECTS OF TWO PRECIS10N LINGUAL ARCHS(PLA) FOR CORRECTION OF POSTER10R SCISSOR BITE BY THE CALORIFIC MACHINE (두 종류의 Precision Lingual Arch(PLA)로 구치부 교차교합 치료시 발생할 동적인 치아이동 양상의 차이를 Calorific Machine으로 실험한 연구)

  • Chun, Youn-Sic;Row, Joon;Suh, Moon-Suk;Park, In-Kwon
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.29-41
    • /
    • 1998
  • Despite orthodontic treatment(tooth moving) is dynamic act many orthodontists have used mainly static evaluation method for evaluating effectiveness of the orthodontic appliances. They want to find which is better appliance, especially in the treatment results and treatment period when they chose one appliance from sugessted appliances for obtaining same treatment goal. The author and colleagues invented and manufactured new machine for getting information about the relative effectiveness from many suggested orthodontic appliances and we named it Calorific machine. We used this Calorinc machine to find the relative differences about tooth moving mechanism and tooth moving time between the Burstone's PLA(single force mechanism) and Molar-up's PLA(couple mechanism) for correcting the posterior cross bite. We measured the distance of tooth moving on the occlusal X-ray film and recorded the moving time of the anchored(control elctro-thermal tooth) and lingually tipped lower second molars(experimental electro-thermal tooth) and then processed paired t-est by SAS program. The results were as follows. 1. Molar-up's PLA showed more extrusive and horizontal movement than Burstone's PLA at the lingually tipped molar(p=0.0000). 2. There is no finding of tooth movement by Molar-up's PLA at the uprighted molar(p=o.3475) but Burstone's PLA showed a little change(0.2 m) at the same molar(p=0.0001). 3. Burstone's PLA took 17.8 minutes for tooth moving but Molar-up's PLA took only 3.8 minutes(p=0.0001)

  • PDF

Driver's Status Recognition Using Multiple Wearable Sensors (다중 웨어러블 센서를 활용한 운전자 상태 인식)

  • Shin, Euiseob;Kim, Myong-Guk;Lee, Changook;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.6
    • /
    • pp.271-280
    • /
    • 2017
  • In this paper, we propose a new safety system composed of wearable devices, driver's seat belt, and integrating controllers. The wearable device and driver's seat belt capture driver's biological information, while the integrating controller analyzes captured signal to alarm the driver or directly control the car appropriately according to the status of the driver. Previous studies regarding driver's safety from driver's seat, steering wheel, or facial camera to capture driver's physiological signal and facial information had difficulties in gathering accurate and continuous signals because the sensors required the upright posture of the driver. Utilizing wearable sensors, however, our proposed system can obtain continuous and highly accurate signals compared to the previous researches. Our advanced wearable apparatus features a sensor that measures the heart rate, skin conductivity, and skin temperature and applies filters to eliminate the noise generated by the automobile. Moreover, the acceleration sensor and the gyro sensor in our wearable device enable the reduction of the measurement errors. Based on the collected bio-signals, the criteria for identifying the driver's condition were presented. The accredited certification body has verified that the devices has the accuracy of the level of medical care. The laboratory test and the real automobile test demonstrate that our proposed system is good for the measurement of the driver's condition.