• Title/Summary/Keyword: uplink system

Search Result 329, Processing Time 0.024 seconds

Uplinks Analysis and Optimization of Hybrid Vehicular Networks

  • Li, Shikuan;Li, Zipeng;Ge, Xiaohu;Li, Yonghui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.473-493
    • /
    • 2019
  • 5G vehicular communication is one of key enablers in next generation intelligent transportation system (ITS), that require ultra-reliable and low latency communication (URLLC). To meet this requirement, a new hybrid vehicular network structure which supports both centralized network structure and distributed structure is proposed in this paper. Based on the proposed network structure, a new vehicular network utility model considering the latency and reliability in vehicular networks is developed based on Euclidean norm theory. Building on the Pareto improvement theory in economics, a vehicular network uplink optimization algorithm is proposed to optimize the uplink utility of vehicles on the roads. Simulation results show that the proposed scheme can significantly improve the uplink vehicular network utility in vehicular networks to meet the URLLC requirements.

Comparison of Two Algorithms using CAZAC Sequence for Cable Modem Uplink (케이블 모뎀 상향링크에 적합한 CAZAC sequence를 이용한 coarse timing recovery의 두 알고리즘 비교)

  • Ha, Hyun-Ju;Oh, Wang-Rok;Kim, Whan-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.53-54
    • /
    • 2007
  • As Cable Network is developing for 2-way high speed data service, it should be developed to transfer high speed data using limited bandwidth. If QAM is using for this, synchronization algorithms become important system parameters. In this paper, we present two methods of coarse timing recovery using CAZAC sequence for cable modem uplink.

  • PDF

Energy D2D Tx-Rx assignment in the Cellular System

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.41-46
    • /
    • 2017
  • In this paper, we investigate the D2D Transmitter(Tx) and Receiver(Rx) pair assignment problem in the cellular system where D2D users share the uplink resource of the cellular system. Sharing the uplink resource of the cellular system may cause interference to the cellular system, though it is beneficial to improve the D2D user Capacity. Therefore, to protect the cellular users, D2D transmit power should be carefully controlled. In this work, we focus on optimal Tx-Rx assignment in such a way that the total transmit power of users is minimized. First, we consider the optimum Tx-Rx assignment in general and the corresponding complexity. Then, we propose an iterative D2D Tx-Rx assignment algorithm with low complexity that can minimize total transmit power of users. Finally, we present the numerical examples that show the complexity and the convergence to the unique transmit power level.

PAPR Analysis of the OFDMA and SC-FDMA in the Uplink of a Mobile Communication System

  • Li, Yingshan;Lee, Il-Jin;Kim, Jang-Su;Ryu, Heung-Gyoon
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • In recent years, OFDMA(orthogonal frequency division multiple access) and SC-FDMA(Single Carrier Frequency Division Multiple Access) have been widely studied for the uplink of a mobile communication system. In this paper, PAPR(Peak-to-Average Power Ratio) and BER(Bit Error Rate) performance of the OFDMA and SC-FDMA systems are studied in relation to the uplink of a mobile communication system. Three kinds of sub-carrier allocation methods in the OFDMA system and 2 kinds of sub-carrier allocation methods in SC-FDMA system are suggested to compare and improve system performance. Simulation results show that in the OFDMA system, the first sub-band allocation method has better PAPR reduction performance than the other methods. In the SC-FDMA system, the distributed allocation method offers similar P APR, compared with the sub-band allocation method. P APR can be further reduced by adding a spectrum shaping filter with an appropriate roll of factor. Furthermore, it is found that on average, SC-FDMA can reduce the PAPR by more than 5 dB compared to OFDMA, when the total sub-carrier number is 1,024 and the sub-carrier number allocated to each user changes trom 8 to 512. Because of the frequency diversity and low PAPR characteristics, SC-FDMA system of the distributed sub-carrier allocation method can achieve better BER performance than the OFDMA system.

Novel Turbo Receiver for MU-MIMO SC-FDMA System

  • Wang, Hung-Sheng;Ueng, Fang-Biau;Chang, Yu-Kuan
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.309-317
    • /
    • 2018
  • Single carrier-frequency-division multiple access (SC-FDMA) has been adopted as the uplink transmission standard in fourth-generation cellular networks to facilitate power efficiency transmission in mobile stations. Because multiuser multiple-input multiple-output (MU-MIMO) is a promising technology employed to fully exploit the channel capacity in mobile radio networks, this study investigates the uplink transmission of MU-MIMO SC-FDMA systems with orthogonal space-frequency block codes (SFBCs). It is preferable to minimize the length of the cyclic prefix (CP). In this study, the chained turbo equalization technique with chained turbo estimation is employed in the designed receiver. Chained turbo estimation employs a short training sequence to improve the spectrum efficiency without compromising the estimation accuracy. In this paper, we propose a novel and spectrally efficient iterative joint-channel estimation, multiuser detection, and turbo equalization for an MU-MIMO SC-FDMA system without CP-insertion and with short TR. Some simulation examples are presented for the uplink scenario to demonstrate the effectiveness of the proposed scheme.

Pilot Symbol Assisted Weighted Data Fusion Scheme for Uplink Base-Station Cooperation System

  • Zhang, Zhe;Yang, Jing;Zhang, Jiankang;Mu, Xiaomin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.528-544
    • /
    • 2015
  • Base Station Cooperation (BSC) has been a promising technique for combating the Inter-Cell Interference (ICI) by exchanging information through a high-speed optical fiber back-haul to increase the diversity gain. In this paper, we propose a novel pilot symbol assisted data fusion scheme for distributed Uplink BSC (UBSC) based on Differential Evolution (DE) algorithm. Furthermore, the proposed scheme exploits the pre-defined pilot symbols as the sample of transmitted symbols to constitute a sub-optimal Weight Calculation (WC) model. To circumvent the non-linear programming problem of the proposed sub-optimal model, DE algorithm is employed for searching the proper fusion weights. Compared with the existing equal weights based soft combining scheme, the proposed scheme can adaptively adjust the fusion weights according to the accuracy of cooperative information, which remains the relatively low computational complexity and back-haul traffic. Performance analysis and simulation results show that, the proposed scheme can significantly improve the system performance with the pilot settings of the existing standards.

Design of UCC Broadcasting System in P2P Based IPTV Environments (P2P 기반의 IPTV 환경에서 UCC 방송을 위한 시스템 설계)

  • Kim, Ji Hoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.37-47
    • /
    • 2010
  • In this paper, we propose an UCC broadcasting system in P2P based IPTV environments. Proposed system applies P2P based multiple chain architecture. UCC broadcasting system transfers data from not ISP server but UCC server peer that is included in DSLAM to joined peers. Therefore an algorithm to manage join and departure of peers have to modified. In this paper we propose an algorithm that does not increase an uplink bandwidth of DSLAM that include UCC server when peer joins to the UCC channel. We will show the improved performance of proposed scheme rather than general method with respect to the uplink bandwidth of DSLAM that include UCC server.

Multi user interference cancellation in satellite to ground uplink system Based on improved WPIC algorithm

  • Qingyang, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5497-5512
    • /
    • 2016
  • An improved optimal weights based on parallel interference cancellation algorithm has been proposed to cancel for interference induced by multi-user access satellite to ground uplink system. Due to differences in elevation relative motion between the user and the satellite, as well as access between users, resulting in multi-user access interference (Multi-user Access Interference, MUI), which significantly degrade system performance when multi-user access. By steepest gradient method, it obtained based on the MMSE criterion, parallel interference cancellation adjust optimal weights to obtain the maximum SINR. Compared to traditional parallel interference cancellation (Parallel Interference Cancellation, PIC) algorithm or serial interference cancellation ( Successive interference Cancellation, SIC), the accuracy of which is not high and too many complex iterations, we establish the multi-user access to the satellite to ground up link system to demonstrate that the improved WPIC algorithm could be provided with high accuracy and relatively low number of iterations.

Adaptive Resource Allocation for Uplink Carrier Aggregation Scheme in LTE-A-Type Networks

  • Choi, Yonghoon;Lee, Yonggyu;Chang, Kapseok
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.759-762
    • /
    • 2012
  • Carrier aggregation is an essential feature in the Long Term Evolution-Advanced (LTE-A) system, which allows the scalable expansion of the effective bandwidth to be delivered to user equipment (UE) through the concurrent use of radio resources across multiple component carriers (CCs). This system's optimal radio-resource use has received much attention under simultaneous access (SA) scenarios for multiple CCs (m-CCs). This letter establishes how many CCs a UE should simultaneously connect to maintain maximum uplink capacity. Under the m-CC LTE-A system, the spectral efficiency of the m-CC SA scheme ($m{\geq}2$) is compared with that of CC selection (CCS). Numerical results reveal that the 2-CC SA scheme outperforms CCS and performs almost equally to the m-CC SA scheme ($m{\geq}3$).

DEVELOPMENT OF TRACKING SYSTEMS APPLICABLE TO SPACE LAUNCH VEHICLE

  • Kim Sung-Wan;Hwang Soo-Seul;Lee Jae-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.247-250
    • /
    • 2004
  • Tracking systems for launch vehicle consist mainly of radar transponder (beacon), RF switch or power divider, antennas as onboard system, and single or multiple radars as ground one. In this paper, tracking systems, which are applicable to KSLV (Korea Space Launch Vehicle)-l, are introduced and the electrical performances for developed prototypes are presented. We have also performed RF link analysis for both uplink and downlink, and estimated that the maximum distance to be able to track KSLV-l stably is dependent on uplink characteristic in our system.

  • PDF