Browse > Article
http://dx.doi.org/10.3837/tiis.2019.02.001

Uplinks Analysis and Optimization of Hybrid Vehicular Networks  

Li, Shikuan (School of Electronic Information and Communications, Huazhong University of Science and Technology)
Li, Zipeng (School of Electronic Information and Communications, Huazhong University of Science and Technology)
Ge, Xiaohu (School of Electronic Information and Communications, Huazhong University of Science and Technology)
Li, Yonghui (School of Electrical and Information Engineering The University of Sydney)
Publication Information
KSII Transactions on Internet and Information Systems (TIIS) / v.13, no.2, 2019 , pp. 473-493 More about this Journal
Abstract
5G vehicular communication is one of key enablers in next generation intelligent transportation system (ITS), that require ultra-reliable and low latency communication (URLLC). To meet this requirement, a new hybrid vehicular network structure which supports both centralized network structure and distributed structure is proposed in this paper. Based on the proposed network structure, a new vehicular network utility model considering the latency and reliability in vehicular networks is developed based on Euclidean norm theory. Building on the Pareto improvement theory in economics, a vehicular network uplink optimization algorithm is proposed to optimize the uplink utility of vehicles on the roads. Simulation results show that the proposed scheme can significantly improve the uplink vehicular network utility in vehicular networks to meet the URLLC requirements.
Keywords
Hybrid vehicular network; Ultra-reliable and low latency communication (URLLC); Vehicular network utility model; Pareto optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Ge, Y. Sun, H. Gharavi and J. Thompson, "Joint Optimization of Computation and Communication Power in Multi-user Massive MIMO Systems," IEEE Transactions on Wireless Communications, Vol. 17, No. 6, pp. 4051-4063, June 2018.   DOI
2 B. Paden, M. Cap, S. Z. Yong, et al., "A survey of motion planning and control techniques for self-driving urban vehicles," IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, March, 2016.   DOI
3 X. Ge, Z. Li and S. Li, "5G software defined vehicular networks," IEEE Communications Magazine, vol. 55, no. 7, pp. 87-93, July, 2017.   DOI
4 A. Osseiran, F. Boccardi, V. Braun et al., "Scenarios for 5G mobile and wireless communications: the vision of the METIS project," IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, May, 2014.   DOI
5 A. Festag, "Cooperative intelligent transport systems standards in europe," IEEE Communications Magazine, vol. 52, no. 12, pp. 166-172, December, 2014.   DOI
6 G. Karagiannis, O. Altintas, E. Ekici, et al., "Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions," IEEE Communications Surveys & Tutorials, vol. 13, no. 4, pp. 584-616, July, 2011.   DOI
7 S. I. Sou and O. K. Tonguz, "Enhancing VANET connectivity through roadside units on highways," IEEE Transactions on Vehicular Technology, vol. 60, no. 8, pp. 3586-3602, October, 2011.   DOI
8 G. Araniti, C. Campolo, M. Condoluci, et al., "LTE for vehicular networking: a survey," IEEE Communications Magazine, vol. 51, no. 5, pp. 148-157, May, 2013.   DOI
9 S. Chen, J. Hu, Y. Shi, et al., "LTE-V: a TD-LTE-based V2X Solution for future vehicular network," IEEE Internet of Things Journal, vol. 3, no. 6, pp. 997-1005, December, 2016.   DOI
10 S. Chen, J. Hu, Y. Shi, et al., "Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G," IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 70-76, July, 2017.   DOI
11 S. Li, Z. Li, X. Ge, et al., "Multi-hop links quality analysis of 5G enabled vehicular networks," in Proc. of 9th International Conference on Wireless Communications and Signal Processing, pp. 1-6, October 11-13, 2017.
12 C. Shao, S. Leng, Y. Zhang, et al., "Performance analysis of connectivity probability and connectivity-aware MAC protocol design for platoon-based VANETs," IEEE Transactions on Vehicular Technology, vol. 50, no. 12, pp. 5596-5609, December, 2015.
13 X. Li, B. j. Hu, H. Chen, et al., "Multi-hop delay reduction for safety-related message broadcasting in vehicle-to-vehicle communications," IET Communications, vol. 9, no. 3, pp. 404-411, February, 2015.   DOI
14 X. Ge, S. Tu, G. Mao, et al., "5G Ultra-Dense Cellular Networks," IEEE Wireless Communications, vol. 23, no. 1, pp. 72-79, February, 2016.   DOI
15 A. Ghosh, T. A. Thomas, MC. Cudak, et al., "Millimeter-wave enhanced local area systems: a high-data-rate approach for future wireless networks," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1152-1163, June, 2014.   DOI
16 L. Xiang, X. Ge, C. X. Wang, et al., "Energy efficiency evaluation of cellular networks based on spatial distributions of traffic load and power consumption," IEEE Transactions on Wireless Communications, vol. 12, no.3, pp. 961-973, March, 2013.   DOI
17 G. Zhang, T. Q. S. Quek, A. Huang, et al., "Delay modeling for heterogeneous backhaul technologies," in Proc. of 2015 IEEE 82nd Vehicular Technology Conference, pp. 1-6, September 6-9, 2015.
18 D. C. Chen, T. Q. S. Quek and M. Kountouris, "Backhauling in heterogeneous cellular networks: modeling and tradeoffs," IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 3194-3206, June, 2015.   DOI
19 T. Mattfeldt, "Stochastic geometry and its applications," Journal of Microscopy, vol. 183, no. 3, pp. 257-257, September, 1996.   DOI
20 J. S. Ferenc, and Z. Nda, "On the size distribution of Poisson Voronoi cells," Physica A Statistical Mechanics & Its Applications, vol. 385, no. 2, pp. 518-526, June, 2004.
21 X. Ge, H. Chen, G. Mao, et al., "Vehicular Communications for 5G Cooperative Small Cell Networks," IEEE Transactions on Vehicular Technology, vol. 65, no.10, pp. 7882-7894, October, 2016.   DOI
22 Y. Liu and L. Dong, "Spectrum sharing in MIMO cognitive radio networks based on cooperative game theory," IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 4807-4820, September, 2014.   DOI
23 W. Zhang, Y. Chen, Y. Yang, et al., "Multi-hop connectivity probability in infrastructure-based vehicular networks," IEEE Journal on Selected Areas in Communications, vol. 30, no. 4, pp. 740-747, May, 2012.   DOI
24 H. Fang, C. Ren, L. Lin, et al., "A road density partition method for the evaluation of road selection," in Proc. of 23rd International Conference on Geoinformatics, pp. 1-6, June 19-21, 2015.