• Title/Summary/Keyword: uplink system

Search Result 329, Processing Time 0.028 seconds

Performance Analysis of a Receiver for WCDMA Systems (광대역 코드분할 다중화 시스템 수신기의 성능 분석)

  • 박중후
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.87-93
    • /
    • 2001
  • As a new type of a linear decorrelating receiver, the Pseudo-Decorrelator was presented for asynchronous code division multiple access systems by the author. In this paper, the concept of the Pseudo-Decorrelator is extended to derive a receiver for WCDMA uplink systems over an additive white Gaussian noise channel. Starting with the analysis of the multiple access components of the decision statistics, a non-square cross-correlation matrix for each bit is obtained. This cross-correlation matrix is then inverted, and the inverted matrix is applied to the decision statistics obtained from a conventional receiver. In this receiver, the detection process can be started after the first three consecutive bits are received. Simulation results are presented for K-user systems over an additive white Gaussian noise channel under the circumstances in which synchronization errors, including time delay errors and carrier phase errors exist. It is shown that the proposed receiver performs better than a conventional receiver and parallel interference canceller.

  • PDF

Analysis of Interference Effect on FS System from ESIM with Motion Characteristics (이동 특성에 기반한 ESIM이 FS 시스템에 미치는 간섭영향 분석)

  • Kang, Young-Houng;Oh, Dae-Sub
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.428-434
    • /
    • 2017
  • In recent years, owing to the growing user demand for the two-way internet service based on the mobile global broadband communications, a new type of satellite terminal has been developed, known as ESIM(Earth Station in Motion). This service was required by Resolution 158(WRC-15) to study on the coexistence with the co-primary FS(Fixed Service) in 27.5-29.5 GHz as a FSS(Fixed Satellite Service) uplink. In this paper, the average received power on ESIM within -10 dB of beam width of FS and its outage probability was analyzed theoretically and also simulated to account for the azimuth angle with uniform distribution. From the results, it can be concluded that this theoretical analysis is very useful to analyze the interference from ESIM into FS based on the statistical and probabilistic method. Therefore, it is necessary to control the azimuth angle due to a moving terminal as well as the inclination angle of moving path, the operation hours, and the speed of ESIM to protect the co-primary FS.

Interference Management by Vertical Beam Control Combined with Coordinated Pilot Assignment and Power Allocation in 3D Massive MIMO Systems

  • Zhang, Guomei;Wang, Bing;Li, Guobing;Xiang, Fei;lv, Gangming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2797-2820
    • /
    • 2015
  • In order to accommodate huge number of antennas in a limited antenna size, a large scale antenna array is expected to have a three dimensional (3D) array structure. By using the Active Antenna Systems (AAS), the weights of the antenna elements arranged vertically could be configured adaptively. Then, a degree of freedom (DOF) in the vertical plane is provided for system design. So the three-dimension MIMO (3D MIMO) could be realized to solve the actual implementation problem of the massive MIMO. However, in 3D massive MIMO systems, the pilot contamination problem studied in 2D massive MIMO systems and the inter-cell interference as well as inter-vertical sector interference in 3D MIMO systems with vertical sectorization exist simultaneously, when the number of antenna is not large enough. This paper investigates the interference management towards the above challenges in 3D massive MIMO systems. Here, vertical sectorization based on vertical beamforming is included in the concerned systems. Firstly, a cooperative joint vertical beams adjustment and pilot assignment scheme is developed to improve the channel estimation precision of the uplink with pilots being reused across the vertical sectors. Secondly, a downlink interference coordination scheme by jointly controlling weight vectors and power of vertical beams is proposed, where the estimated channel state information is used in the optimization modelling, and the performance loss induced by pilot contamination could be compensated in some degree. Simulation results show that the proposed joint optimization algorithm with controllable vertical beams' weight vectors outperforms the method combining downtilts adjustment and power allocation.

Bandwidth Management of WiMAX Systems and Performance Modeling

  • Li, Yue;He, Jian-Hua;Xing, Weixi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.63-81
    • /
    • 2008
  • WiMAX has been introduced as a competitive alternative for metropolitan broadband wireless access technologies. It is connection oriented and it can provide very high data rates, large service coverage, and flexible quality of services (QoS). Due to the large number of connections and flexible QoS supported by WiMAX, the uplink access in WiMAX networks is very challenging since the medium access control (MAC) protocol must efficiently manage the bandwidth and related channel allocations. In this paper, we propose and investigate a cost-effective WiMAX bandwidth management scheme, named the WiMAX partial sharing scheme (WPSS), in order to provide good QoS while achieving better bandwidth utilization and network throughput. The proposed bandwidth management scheme is compared with a simple but inefficient scheme, named the WiMAX complete sharing scheme (WCPS). A maximum entropy (ME) based analytical model (MEAM) is proposed for the performance evaluation of the two bandwidth management schemes. The reason for using MEAM for the performance evaluation is that MEAM can efficiently model a large-scale system in which the number of stations or connections is generally very high, while the traditional simulation and analytical (e.g., Markov models) approaches cannot perform well due to the high computation complexity. We model the bandwidth management scheme as a queuing network model (QNM) that consists of interacting multiclass queues for different service classes. Closed form expressions for the state and blocking probability distributions are derived for those schemes. Simulation results verify the MEAM numerical results and show that WPSS can significantly improve the network’s performance compared to WCPS.

Simplified Near Optimal Downlink Beamforming Schemes in Multi-Cell Environment (다중 셀 환경에서 적은 복잡도를 갖는 준 최적 하향 빔형성)

  • Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.764-773
    • /
    • 2011
  • Despite enormous performance gain with multi-antenna transmission in the single cell environment, its gain diminishes out in the multi-cell environment due to interference. It is also very hard to solve the efficient downlink beamforming with low complexity in multi-cell environment. First, this paper shows that the asymptotically sum rate optimal downlink beamformings at low and high SNR are maximum ratio transmit (MRT) and zero forcing (ZF) beamforming in the multi-cell system, respectively. Secondly, exploiting the asymptotically optimal downlink beamforming, we develop simple two types of near optimal downlink beamforming schemes having the form of minimum mean squared error (MMSE) beamforming obtained from the dual uplink problem. For each type, three different subclasses are also considered depending on the computational complexity. The simulation results show that the proposed near optimum algorithms provide the trade-off between the complexity and the performance.

Analysis of Adjacent Channel Interference for WCDMA ATC Service Frequency Allocation Operating in MSS Band (MSS 대역 WCDMA ATC 서비스 주파수 할당을 위한 인접 채널 간섭 분석)

  • Kang, Young-Heung;Jeong, Nam-Ho;Oh, Dae-Sub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1288-1296
    • /
    • 2012
  • A candidate hybrid satellite and terrestrial network architecture, MSS/ATC(Mobile Satellite Service/Ancillary Terrestrial Component), is proposed for utilizing efficiently the exist MSS bands. Studies on the adjacent channel interference from the existing terrestrial mobile services and MSS/ATC itself are important to allocate a new ATC service frequency in MSS band. In this paper, we have analyzed the minimum permission power of terrestrial base station and the capacity loss with parameters of ACIR, number of MS(mobile Station) and MES(Mobile Earth Station) in uplink, and also, the capacity performance based on 1 beam and 1 cell assumption for MSS/ATC in downlink. The ACIR requirements are estimated in two MSS/ATC frequency allocation scenarios for 5 MHz and 10 MHz guard band to share spectrum with adjacent systems, and according to these ACIR requirements the service coverage and the receiver filter for ATC system should be designed in near future.

Performance Evaluation of a Subcarrier Allocation Scheme with Inter-Cell Interference and Network Coding in OFDMA Relay Systems (OFDMA 중계 시스템에서 인접셀 간섭과 네트워크 코딩을 고려한 주파수 할당 기법의 성능 평가)

  • Jang, Woo Jin;Son, Se Ho;Hwang, Ho Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.54-56
    • /
    • 2013
  • A subcarrier allocation scheme for base station (BS), relay station (RS) and mobile station (MS) can affect the performance of orthogonal frequency division multiple access (OFDMA) relay systems. In this paper, we propose a subcarrier allocation scheme with inter-cell interference and network coding in OFDMA relay systems. In the network coding zone, we consider an environment where RS can transmit a frame to BS and MS simultaneously. We divide an OFDMA frame into downlink zone, uplink zone, and network coding zone. The proposed scheme allocates subcarriers to BS, RS, and MS for each zone with consideration of inter-cell interference in OFDMA relay systems. We evaluate the performance of the proposed subcarrier allocation scheme through simulation.

  • PDF

Multi-Rate TCP Video Streaming for Client Heterogeneity (이종 클라이언트들을 위한 멀티레이트 TCP 비디오 스트리밍에 관한 연구)

  • Jung, Young-H.;Choe, Yoon-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3B
    • /
    • pp.144-151
    • /
    • 2008
  • In this paper, we propose a video streaming server that guarantees a certain level of quality when a server should serve video streaming service to multiple heterogenous clients simultaneously with TCP transport. If each heterogeneous client requests video streaming service in according to its own requirement such as bitrate of content and these requests are accepted by a server, then TCP flows for each video streaming session fairly share limited uplink bandwidth of the server. At this time, because TCP's bandwidth fair-share characteristics can result in bandwidth shrinkage of higher bitrate video streaming session, the client of higher bitrate video may suffer sluggish playback which is related with streaming QoS degradation. To tackle this problem, our proposed server system uses multiple TCP connections adaptively for each video streaming session depending on the anticipated status of the client playout buffer. Simulation results show that our proposed algorithm can successfully reduce the occurrence of playout buffer underrun and enhance streaming quality for whole video clients.

Coverage and Energy Modeling of HetNet Under Base Station On-Off Model

  • Song, Sida;Chang, Yongyu;Wang, Xianling;Yang, Dacheng
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.450-459
    • /
    • 2015
  • Small cell networks, as an important evolution path for next-generation cellular networks, have drawn much attention. Different from the traditional base stations (BSs) always-on model, we proposed a BSs on-off model, where a new, simple expression for the probabilities of active BSs in a heterogeneous network is derived. This model is more suitable for application in practical networks. Based on this, we develop an analytical framework for the performance evaluation of small cell networks, adopting stochastic geometry theory. We derive the system coverage probability; average energy efficiency (AEE) and average uplink power consumption (AUPC) for different association strategies; maximum biased received power (MaBRP); and minimum association distance (MiAD). It is analytically shown that MaBRP is beneficial for coverage but will have some loss in energy saving. On the contrary, MiAD is not advocated from the point of coverage but is more energy efficient. The simulation results show that the use of range expansion in MaBRP helps to save energy but that this is not so in MiAD. Furthermore, we can achieve an optimal AEE by establishing an appropriate density of small cells.

DL Radio Transmission Technologies for WRAN Applications : Adaptive Sub-channel Allocation and Stationary Beamforming Algorithms for OFDMA CR System (WRAN 응용을 위한 하향링크 무선전송 방식 : OFDMA 상황인식 시스템에서의 적응 부채널 할당 및 고정 빔 형성 기법)

  • Kim Jung-Ju;Ko Sang-Jun;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.291-303
    • /
    • 2006
  • In this paper, we analyze functional requirements of the IEEE 802.22 WRAN, and propose a downlink 프레임 structure satisfying the requirements. The proposed downlink 프레임 structure maximizes e transmission efficiency by adopting the cognative radio to assign the sub-channel by reflecting the channel environment of WRAN. We also calculate the signalling overhead for both downlink and uplink, and analyze the performances of time synchronization, frequency synchronization and cell identification based on the 프리앰블 in downlink and suggest the channel estimation method tough 프리앰블 or pilot. As a final result, e stationary beamforming (SBF) algorithm with dynamic channel allocation(DCA) is proposed. The proposed OFDMA downlink 프레임 structure with channel adaptive sub-channel allocation for cognitive radio applications is verified to meet the requirements of IEEE 802.22 WRAN, by computer simulations.