• Title/Summary/Keyword: upland crops

Search Result 314, Processing Time 0.027 seconds

Modeling Effective Rainfall for Upland Crops (밭에서의 유효우량 산정모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 1993
  • A model for estimating daily effective rainfall of upland crops was developed. The infiltration process was described by Green-Ampt infiltration model developed by Chu(1978). The model considers delayed surface ponding and surface detention storage under a uniform soil profile. The Green-Ampt parameters, that is, average hydraulic conductivity and average capillary pressure head on a sandy loam soil were determined from field experiment using Air-entry permeameter developed by Bouwer(1966). The model was verified by comparing measured and simulated surface runoff. The ratios of effective rainfall to total rainfall for red pepper, soybean, sesame and Chinese cabbage were evaluated using Borg's root growth model( 1986) respectively. The followings are a summary of this study results; 1.In a sandy loam soil average hydraulic conductivity was 3.28cm/hr and average capillary pressure head was 3.00cm. 2.The root growth of upland crops could be expressed by Borg's root growth model successively. 3.The measured and simulated surface runoff was agreed well with each other. 4.As the rainfall amount was increased, the ratio of effective rainfall to total rainfall was decreased exponentially till a certain growing period.

  • PDF

Spectral Reflectance Signatures of Major Upland Crops at OSMI Bands

  • Hong, Suk-Young;Rim, Sang-Kyu;Jung, Won-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.370-375
    • /
    • 1998
  • Spectral reflectance signatures of upland crops at OSMI bands were collected and evaluated for the feasibility of crop discrimination knowledge-based on crop calendar. Effective bands and their ratio values for discriminating corn from two other legumes were defined with OSMI equivalent bands and their ratio values. June 22 among measurements dates was the best date for corn discrimination from two other legumes, peanut and soybean, because all OSMI equivalent bands and their ratio values in June 22 were highly significant for corn separability. Phenological growth stage of a silage corn (rs510) could be estimated as a function of spectral reflectance signatures in vegetative stage. Five growth stage prediction models were generated by the SAS procedures REG and STEPWISE with OSMI equivalent bands and their ratio values in vegetative stage.

  • PDF

Changes of Soil Nitrogen Supply and Production of Upland Forage Crops by Cattle Manure during Conversion from Paddy to Upland Condition in Paddy Field (논의 밭전환 연차간 우분시용에 의한 질소공급 및 밭사료 작물의 생산력 변화)

  • Seo Jong-Ho;Kim Sok-Oong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.387-393
    • /
    • 2005
  • The effect of cattle manure with the rates of 2 and 4 ton $l0a^{-1}$ for winter rye and summer corn cultivation, respectively, on the dry matter (DM) yield and nitrogen (N) uptake were investigated during successive three­year conversion period from paddy to upland condition in paddy field. The changes in soil properties and soil N sup­plying capacity during repetitive manure application were a1so examined. Growth and DM yield of upland forage crops, especially. winter rye were hindered highly by poor soil condition in the first year after conversion from paddy to upland condition, so apparent recovery of cattle manure N by crops was very low in the first conversion year. But, DM yield and N uptake of upland forage crops were increased linearly by accumulative input of cattle manure along with mineral N enrichment in soil, which also increased apparent recovery of cattle manure-No It seemed that those increases were mainly due to the improvement of soil properties such as soil mineral N, soil organic matter (soil carbon), potentially mineralizable N and bulk density by accumulative input of cattle manure rather than the increase of soil N supply according to accumulative conversion period from paddy to upland condition. It was derived that conversion period from paddy to upland condition over 2 years is needed to obtain proper DM yield in paddy field and accumulative inputs of cattle manure during the conversion period is more influential to the continuous increment of DM yield and N uptake of upland crop as well as of potential N supplying capacity of soil.

Growth and Yield of Forage Crops Affected by Soil Texture in Upland Diverted from Paddy Field (논 전환밭에서 토성에 따른 청예사료작물의 생육과 수량)

  • 김수형;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.6
    • /
    • pp.577-584
    • /
    • 1994
  • A field trial was carried out to select suitable crops for diverted upland from paddy field and to investigate response of several forage crops to soil properties and ground water levels of the diverted upland at Suwon area of Korea in 1992 and 1993. Experiments were conducted in sandy loam plot and comparatively clay loam plot having higher ground water level. Rye (Paldang), triticale (Shinki), italian ryegrass (Tetraflorum) were used as wintering forage crops and maize(Suwon 19), sorghum-sudangrass hybrid(Pioneer855F), pearl millet(Suwon 6), japanese millet (King) were used as summer forage crops. Growth and yield of forage crops were better and higher in sandy loam soil having low ground water level. Among wintering forage crops, triticale recorded the highest forage yield. Rye showed high forage yield in sandy loam soil and italian ryegrass hardly survived in diverted upland of Suwon area during winter. Among summer forage crops, forage yield of sorghum-sudangrass hybrid was highest. Yield of japanese millet was not affected by soil conditions in both plots. Yields of pearl millet and maize remained relatively low in both plots.

  • PDF

Survey on current Farmer's Irrigation Practice on upland in the Youngsan River Irrigation Project District IV (영산강 IV단계 사업지구 내 밭관개 실태조사)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Choi, Soo-Myung;Kim, Jin-Taek;Lee, Yong-Jik
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.287-290
    • /
    • 2003
  • To devise better development plan, survey was conducted about current Farmer's irrigation Practice on upland in the Youngsan River Irrigation Project District IV. Major upland crops are garlic and onion in this region. Currently, upland irrigation is conducted using ground water. It is found that irrigation interval is $2{\sim}3$ day for dry-field rice and $3{\sim}7$ days for other crop, in general. Whole day is required to irrigate for many farmers due to lack of facilities and water source. Farmers have no intention to change staple crops even after completion of Irrigation Project of Youngsan River District IV.

  • PDF

Crop Combinations and Rotation Years for Paddy-Upland Cropping System in Middle Part of Korea (중부지역 답전윤환에 적합한 전작물 윤환년수와 논작부체계)

  • 김정일;이경희;오용비;오윤진;이정기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.304-311
    • /
    • 1993
  • To find out suitable crops and their rotation years with rice for paddy-upland rotation, continuous rice cropping and rice with 1, 2 and 3 years cropping of upland crops(soybean, maize and job's tears) were tested for four years from 1989 to 1992. Rice yield, when averaged over rotation years for each crop, was increased ranging from 7% to 12% when compared with that of continuous rice cropping. With every crop, rice yield of 2 year upland rotation was higher than that of 1 year upland rotation, but rice quality seemed to deteriorate in paddy-upland rotation. When considering yields of the upland crops, 1 year rotation was the best condition for soybean and job's tears, with 3 years rotation being the best for maize. In paddy-upland rotation, number of weed species and its occurrence rates were reduced in paddy and upland condition and the reduction rates in paddy condition were higher than those in upland condition. Physical properties of soil were improved in paddy-upland rotation and airphase seemed to increase with increasing upland period.

  • PDF

Development of the Estimation System for Agricultural Water Demand (농업용수 수요량 산정 시스템 개발)

  • 이광야;김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • To estimate agricultural water demand, many factors such as weather, crops, soil, cultivation method, crop coefficient and cultivation area, etc. must be considered. But it is not easy to estimate water demand in consideration of these factors, which are variable according to growth stage and regional environment. This study provides estimation system for agricultural water demand(ESAD) in order to estimate water demand easily and accurately, and arranges all factors needed for water demand estimation. This study identifies the application of estimation system for agricultural water demand with the data observed in the other studies, and analyzes nationwide agricultural water demand. The results are as follows. 1) The practice of different rice cultivation in the paddy field resulted in different water demands. Water depth and infiltration ratio in paddy are the most important factors to estimate water demand. The water depths in paddy simulated by ESAD is very similar to the observed ones. 2) Water demand of upland crops varies with the crops, soil, etc.. Effective rainfall estimated by daily routing of soil moisture varies according to the crops, soil, and effective soil zone(root depth). As crop root become grown, effective rainfall and an amount of irrigation water has been increased. 3) The current unit water demand of upland crops applied as 500mm or 550mm to estimate water demand does not reflect the differences caused by the crops, regional surrounding, weather condition, etc. Results from ESAD for the estimation of water demand of upland crops show that ESAD can simulate the actual field conditions reasonably because it simulates the actual irrigation practices with the daily routing of soil moisture.

  • PDF

Survey on Current Farmer's Irrigation Practice on Upland in the Yeongsan River Irrigation Project District IV (영산강 IV단계 사업지구 밭관개 실태조사)

  • Yoon Kwang Sik;Kim Young Joo;Yoon Suk Gun;Han Kuk Heon;Kim Jin Taek
    • KCID journal
    • /
    • v.11 no.2
    • /
    • pp.55-63
    • /
    • 2004
  • To devise better development plan, survey was conducted about current farmer's irrigation management on upland in the YoungSan River Irrigation Project District IV. Major upland crops are garlic and onion in this region. Currently, upland irrigation has b

  • PDF

Evaluation of Cropping Model of Green Manure Crops with Main Crops for Upland-Specific

  • Chung, Doug Young;Park, Misuk;Cho, Jin-Woong;Lee, Sang-Eun;Han, Kwang-Hyun;Ryu, Jin-Hee;Hyun, Seong-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • For organic farming, green manure crops such as leguminous forages and barley have been broadly used to improve soil fertility and soil physical and chemical properties by repeatedly cutting and mulching them directly as winter crop in the field in the rotation. In this investigation we selected 78 agricultural farm corporations as well as individual organic farmhouses related to crop rotation from greenmanure crops to main crops in order to analyze the relationship of cropping system between main crops and green manure crops. The results showed that the green manure crops were divided into two groups as leguminous and nonleguminous crops, representing that those are limited to specific climate and farming systems of regions. Also the 10 or less green manure crops including sudangrass, hairyvetch, italian ryegrass, sorghun, buckwheat, oat, pea, rye, clover, and canola which belong to leguminous crops which are presently cultivated from the organic farmhouses within the rotational crop system. We also confirmed that the major main crops are sweet potato, soybean, corn, tobacco, spinach from usage frequency analyzed by NetMiner H 2.6 which was used to estimate the rotational cropping system among the green manure crops and main crops.

Estimation on ability of livestock manure digestion for upland crops (밭작물별 가축분 소화능 계량화 평가)

  • Hyun, Byung-Keun;Yun, Hong-Bae;Kwon, Soon-Ik;Jung, Kwang-Yong;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2001
  • Owing to raising number of livestock, we have a problem to solve disposal of livestock manure. We know that soil have the digestion ability of livestock manure as one of multifunctionality. I carried out to investigate of livestock manure digestion (especially pig and chicken manure) that is considered as nitrogen fertilizer in upland crops. The results were summarized as follows: 1. The amount of pig manure was(1999) 4,592,375 tons/year, and chicken manure was 4,488,166 tons/year and equivalent to 41,912 tons N/year and 76,223 tons N/year, respectively. 2. The definition of the digestion ability of livestock manure is as the maximum application amount of livestock manure without injuring soil and plant. And the calculation model of digestion ability of livestock manure(ALMD) is follows: ALMD = amount of nitrogen requirement per each upland crop / {(total nitrogen contents in livestock manure) ${\times}$ (nitrogen fertilizer efficiency of livestock manure)} 3. The amount of ability of pig and chicken manure for upland crops (dry based) were 1,142.9kg/10a and 540.1kg/10a, respectively. 4. The order of amount of digestion ability of livestock manure on upland were vegetables > orchards > miscellaneous grains(corn) > barley > potatoes > pulses > oil seeds & special crops ) fodder crops) mulberry.

  • PDF