• Title/Summary/Keyword: uphill section

Search Result 7, Processing Time 0.023 seconds

Characteristic of Road Traffic Noise According to Road Vertical Alignment (도로 종단선형에 따른 도로교통 소음 특성 분석)

  • Moon, Hak Ryong;Han, Dae Cheol;Kang, Won Pyoung
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.95-105
    • /
    • 2013
  • PURPOSES: The purpose of this study is to research the influence of road traffic noise by road slope through the analysis of the field road traffic noise and determine consideration of road slope in the case of appling active noise cancellation. METHODS: This study measures vehicle's noise by the NCPX method at the three field sections such as uphill, downhill, and flatland. Total sound pressure and sound pressure level by the 1/3 octave band frequency are calculated through the raw field data. Total sound pressure level is compared by ANOVA test and T test statistically. The results obtained are compared in accordance with the road slope and the progress of the uphill section. RESULTS : The noise characteristic of early, medium, and last parts of uphill was found to be consistent when the vehicle was travelling uphill section. The result of statistical test, it was shown that total sound pressures are not different each other. According to the comparison by the geometry, sound pressure of the uphill section was higher than those of the flatland and downhill section in high frequency band. By the result of statistical test, total sound pressure are different according to geometry in the case of high vehicle speed. In the comparison result by road slope, each sound pressure level was found to be consistent in total frequency. However, total sound pressure proportionally increased according to road slope. CONCLUSIONS: It is found that the effect of road slope on noise generation was little in this experimental sites.

Ball movements in various surface angles of uphill putting based on different ball positions (오르막 퍼팅 동작 시 볼의 위치가 퍼터와 볼의 움직임에 미치는 영향)

  • Ryu, Jong-Wook;Kim, Jai-Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.448-455
    • /
    • 2019
  • This study aims to discover whether there are other factors, such as the ball position and address that will increase the percentage of holed putts from different angles of surface. In this study, we selected five male tour professional golfers that has been of 15 years or longer on the Korea Golf Association. As a research tool, after installing a video camera at an artificial site that's similar with the real green, and with the player's own putter, motion analysis was carried out using a Titleist V1x, which is commonly used by golfers. We use SPSS programs, significance level a=.05. According to the ball movement during the ball movement during the ball position putt by section, it is confirmed that the ball speed and angular velocity increase as the ball position changes from left to right. If the uphill putt, ball movement was found to be increased same change flat putt and There is no significance deviation. In this study, we investigate how the clubface and ball move during impact by varying the position of the address ball according to the slope during the ascent putt, which should increase the success rate among the various slopes. This study was conducted to present scientific data.

Development of a Fuel-Efficient Driving Method based on Slope and Length of Uphill Freeway Section (고속도로 오르막 구간의 경사도와 길이에 따른 연료 효율적 주행방법 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • In 2011, greenhouse gas emissions of transport sector were 85.04 million $tonCO_2eq$ and road emissions accounted for 95% of total emissions in the transport sector. There are few innovative technologies to reduce greenhouse gas emissions aside from eco-driving education and public relation program. Therefore, this paper focused on analyzing optimal acceleration by certain road grades and suggested fuel-efficient driving method for various uphill sections. Scenarios were established by driving modes. Speed profiles were generated by scenarios and speed variations. Each speed profile applied to Comprehensive Modal Emission Model and then each fuel consumption was estimated. Driving mode and speed variation that minimized fuel consumption were driven according to grade percent and uphill distance. When driving in the eco-friendly mode of the driving and speed variation, reduction rate of fuel consumption was evaluated by comparison between eco-driving and cruise control mode. When a vehicle drove under eco-driving mode at 100kph, 90kph and 80kph on uphill road, fuel consumptions were reduced by 33.9%, 30.8% and 5.3%, respectively.

Analysis of Vehicle Noise Effect by Microphone Position and Road Geometry (도로 기하구조에 따른 차량 Microphone 위치별 소음 영향 분석)

  • Moon, Hak Ryong;Han, Dae Cheol;Kang, Won Pyoung
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: The purpose of study is to understand the characteristic of driving noise from the front and rear tire for effective active noise cancellation application. METHODS : As literature review, noise measurement methods were reviewed. Noise measurement conducted at three kind of section by road slope using CPX(Close Proximity Method). Noise data was compared by total sound pressure level and 1/3 octave band frequency sound pressure level. Also, each section was compared by T-test using SPSS. RESULTS : In the case of the uphill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low and high frequency band. In the case of high slope section of Sangsaek-Ri, the sound pressure level of the front tire was higher than that of the rear tire in high frequency. Also, in the case of the downhill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low frequency band. However, the sound pressure levels of both the front and rear tires were approximately the same in the high slope section of Sangsaek-Ri. The result of T-test showed that total sound pressures of the front and rear tires were not different from each other in the case of high slope and high speed. CONCLUSIONS: Road slope was not an important variable for effective active noise cancellation.

A study on the enhancement and performance optimization of parallel data processing model for Big Data on Emissions of Air Pollutants Emitted from Vehicles (차량에서 배출되는 대기 오염 물질의 빅 데이터에 대한 병렬 데이터 처리 모델의 강화 및 성능 최적화에 관한 연구)

  • Kang, Seong-In;Cho, Sung-youn;Kim, Ji-Whan;Kim, Hyeon-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.1-6
    • /
    • 2020
  • Road movement pollutant air environment big data is a link between real-time traffic data such as vehicle type, speed, and load using AVC, VDS, WIM, and DTG, which are always traffic volume survey equipment, and road shape (uphill, downhill, turning section) data using GIS. It consists of traffic flow data. Also, unlike general data, a lot of data per unit time is generated and has various formats. In particular, since about 7.4 million cases/hour or more of large-scale real-time data collected as detailed traffic flow information are collected, stored and processed, a system that can efficiently process data is required. Therefore, in this study, an open source-based data parallel processing performance optimization study is conducted for the visualization of big data in the air environment of road transport pollution.

Analysis of vehicle progress before and after a collision using simulation (시뮬레이션을 이용한 충돌 전후 차량 진행궤적 분석)

  • Han, Chang-Pyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.402-408
    • /
    • 2021
  • Vehicle engineering analysis in the event of an accident caused by a car built on mechanical design has not been investigated in-depth but relies on the subjective experience knowledge of the investigator. This study analyzed the correlation between the speed, progress, steering, and braking before impact, which is consistent with the final stop position, by drawing a site situation chart using the CAD (CAD) program and repeating 250 crashes using the PC-Crash program. The following situations were investigated: lower impact velocity; greater impact speed of the vehicle, which is not affected significantly by the departure angle; higher vehicle speed, such as the effective impact velocity, after the impact; higher vehicle speed; and lower vehicle speed. (Ed note: I am unsure what you are saying here. It appears contradictory and not a complete sentence. Please check the changes.)The simulation results of this study identified the process of returning to the magnetic progression lane after recognizing the opposite porter while Mighty was carried out on the uphill left-curve section in a position that crossed the center line, and the collision of the porter's front left side, pushing the porter in the right diagonal direction and making the front stop towards approximately 11 o'clock.

Driving Methology for Smart Transportation under Longitudinal and Curved Section of Freeway (스마트교통시대의 종단 및 횡단 복합도로선형 구간에서의 가감속 시나리오별 최적주행 방법론)

  • Yoon, Jin su;Bae, Sang hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.73-82
    • /
    • 2017
  • As of December 2016, the number of registered automobiles in Korea exceeds 21million. As a result, greenhouse gas emission by transportation sector are increasing every year. It was concluded that the development of the driving strategy considering the driving behavior and the road conditions, which are known to affect the fuel efficiency and the greenhouse gas emissions, could be the most effective fuel economy improvement. Therefore, this study aims to develop a fuel efficient driving strategy in a complex linear section with uphill and curved sections. The road topography was designed according to 'Rules about the Road Structure & Facilities Standards'. Various scenarios were selected. After generating the speed profile, it was applied to the Comprehensive Modal Emission Model and fuel consumption was calculated. The scenarios with the lowest fuel consumption were selected. After that, the fuel consumption of the manual driver's driving record and the selected optimal driving strategy were compared and analyzed for verification. As a result of the analysis, the developed optimal driving strategy reduces fuel consumption by 21.2% on average compared to driving by manual drivers.