• Title/Summary/Keyword: up-sampling

Search Result 833, Processing Time 0.024 seconds

Research on Microprocessor Based Digital Filter Design (마이크로프로세서를 이용한 디지탈 필타 설계연구)

  • 이화세
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.3
    • /
    • pp.19-27
    • /
    • 1979
  • Microprocessor based digital filter was designed rising focus number system in order to increase the multiplication speed of microprocessor program. Addition and subtraction program was treated using look up table. The sampling speed was improved up to 500 samples per seconds on the third-order low- Pass digital filters.

  • PDF

A Study on the Relevant Factors of the Psychological Expecter Effects of Make-up according to Body Cathexis and Make-up Attitude (신체만족도와 화장태도에 따른 화장후 심리적 기대효과의 관련변인 연구)

  • Choi, Su-Koung
    • Korean Journal of Human Ecology
    • /
    • v.16 no.4
    • /
    • pp.885-897
    • /
    • 2007
  • The women selected by random sampling were classified into four groups according to their body cathexis and make-up attitude in order to investigate influences in psychological expecter effects of make-up. For the study, a questionnaire survey was conducted of 436 women in between their twenties to fifties residing in the Kyeongnam region. Obtained data were analyzed pearson's correlation coefficient and multiple regression analysis. The result are as follows. Cluster was classified into four groups: positive congruity(G1), positive incongruity(G2), negative congruity(G3), negative incongruity(G4). The make-up behaviors were found to be very influential factors, and so were desires and clothing values in some degree. But, the psychological expecter effects of make-up according to body cathexis and make-up attitude of adult women showed a difference in subordinate factors of desire, clothing value, and make-up behavior in view of their peculiarities classified in detail.

Factors Affecting Start-up Behavior and Start-up Performance During the COVID-19 Pandemic in Indonesia

  • PRAMONO, Cristoper Allen;MANURUNG, Adler Haymans;HERIYATI, Pantri;KOSASIH, Wibowo
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.809-817
    • /
    • 2021
  • The worldwide spread of the COVID-19 pandemic has had a severe impact on the global economy. The COVID-19 pandemic has spread with alarming speed and. The economic damage is already evident and represents the largest economic shock the world has experienced in decades. This study analyzes the factors that influence behavior and its impact on start-up performance, through technology capabilities, technology development, organizational structure characteristics, and leadership technology. The mixed-method was used in this research to be applied to start-up companies in Jabodetabek with a population of 522 start-ups. Then the sample was selected through purposive sampling technique to obtain a sample of 187 start-ups. Primary data was collected through a questionnaire, then statistical analysis was carried out using Partial Least Square. There are ten variables used in the model as measured by the questionnaire. The results showed that the four factors (agility, entrepreneurship capability, business transformation, and opportunity) significantly influence start-up behavior. The results showed that the start-up behavior significantly influenced technology capabilities, technology development, organizational structure characteristics, and leadership technology. This study also found that start-up behavior had the greatest influence on organizational structure characteristics, partially affect start-up performance, but leadership technology does not have a significant effect on start-up performance.

0.11-2.5 GHz All-digital DLL for Mobile Memory Interface with Phase Sampling Window Adaptation to Reduce Jitter Accumulation

  • Chae, Joo-Hyung;Kim, Mino;Hong, Gi-Moon;Park, Jihwan;Ko, Hyeongjun;Shin, Woo-Yeol;Chi, Hankyu;Jeong, Deog-Kyoon;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.411-424
    • /
    • 2017
  • An all-digital delay-locked loop (DLL) for a mobile memory interface, which runs at 0.11-2.5 GHz with a phase-shift capability of $180^{\circ}$, has two internal DLLs: a global DLL which uses a time-to-digital converter to assist fast locking, and shuts down after locking to save power; and a local DLL which uses a phase detector with an adaptive phase sampling window (WPD) to reduce jitter accumulation. The WPD in the local DLL adjusts the width of its sampling window adaptively to control the loop bandwidth, thus reducing jitter induced by UP/DN dithering, input clock jitter, and supply/ground noise. Implemented in a 65 nm CMOS process, the DLL operates over 0.11-2.5 GHz. It locks within 6 clock cycles at 0.11 GHz, and within 17 clock cycles at 2.5 GHz. At 2.5 GHz, the integrated jitter is $954fs_{rms}$, and the long-term jitter is $2.33ps_{rms}/23.10ps_{pp}$. The ratio of the RMS jitter at the output to that at the input is about 1.17 at 2.5 GHz, when the sampling window of the WPD is being adjusted adaptively. The DLL consumes 1.77 mW/GHz and occupies $0.075mm^2$.

Study on the Short Term Exposure Level (STEL) of the Benzene for the Tank Lorry Truck Drivers during Loading Process

  • Park Doo Yong
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2004
  • Some of the petroleum products contain benzene which is well known as a confirmed human carcinogen. For example, gasoline products contain benzene ranging up to several percents by weight. High exposures to the benzene and other organic solvents would be likely to occur during intermittent tasks and or processes rather than continuous jobs such as sampling, repair, inspection, and loading/unloading jobs. The work time for these jobs is various. However, most of work time is very short and the representative time interval is 15 minutes. Thus, it is preferable to do exposure assessment for 15 minute time weighted average which is known as a short time exposure level(STEL) by ACGIH rather than for 8-hours TWA. It is particularly significant to the exposure monitoring for benzene since it has been known that the exposure rate plays an important role to provoke the leukemia. Due to the large variations, a number of processes/tasks, the traditional sampling technique for organic solvents with the use of the charcoal and sampling pumps is not appropriate. Limited number of samples can be obtained due to the shortage of sampling pumps. Passive samplers can eliminate these limitations. However, low sampling rates resulted in collection of small amount of the target analysts in the passive samplers. This is originated the nature of passive samplers. Field applications were made with use of passive samplers to compare with the charcoal tube methods for 15 minutes. Gasoline loading processes to the tank lorry trucks at the loading stations in the petroleum products storage area. Good agreements between the results of passive samplers and those of the charcoal tubes were achieved. However, it was found that special cautions were necessary during the analysis at very low concentration levels.

Design of the Optimal Phase for the Interpolant Filter in the Second-order Bandpass Sampling System (2차 BPS 시스템의 interpolant 필터에 대한 최적 위상 설계)

  • Baek, Jein
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.132-139
    • /
    • 2016
  • In the bandpass sampling(BPS), the sampling frequency for the analog-to-digital converter is lower than that of the signal to be sampled. Since the BPS operation results in the signal spectrum to be copied on the baseband, it is possible for the frequency down-converter to be conveniently omitted. The second-order BPS system is introduced in order to cancel the aliased interference components from the BPS output that may be generated by the BPS processing. In this paper, we introduce a design method for the optimal phase of the interpolant filter in the second-order BPS system which enables to maximally cancel the aliased components. Being mathematically derived, this method can always be applied independently to the spectral characteristics of the BPS input signal. The performance improvements by the suggested method has been measured statistically with various power spectra of the received signal, and it has been shown that the maximal amount of the improvements reaches up to 5~20 [dB] in comparison with the previous suboptimal algorithm.

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.

Review on the Analytical Methods and Ambient Concentrations of Organic Nitrogenous Compounds in the Atmosphere (대기 유기질소화합물의 분석방법 및 농도)

  • Choi, Na Rae;Kim, Yong Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.120-143
    • /
    • 2018
  • The analytical methods and their ambient levels of organic nitrogenous compounds such as nitrosamines, nitramines (nitroamines), imines, amides and nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) in the atmosphere are summarized and discussed. Sampling for the analysis of organic nitrogenous compounds was mostly conducted using high volume air sampler. The direct liquid extraction (DLE) using sonification and the pressurized liquid extraction (PLE) using the accelerated solvent extraction (ASE) have been frequently employed for the extraction of organic nitrogenous compounds in the atmospheric samples. After extraction, clean-up via filtration and the solid phase extraction (SPE) and concentrations using nitrogen and rotary evaporator have been generally conducted but in some studies the clean-up and concentration steps have been omitted to prevent the loss of analyte and improve the recovery rate of the analytical procedure. Instrumental analysis was mainly carried out using gas chromatography (GC) or the high performance liquid chromatography (HPLC) coupled with the single quadrupole mass spectrometer or tandem mass spectrometer in the electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) mode and analysis sensitivity of nitrosamines and nitramines were higher in NCI mode. Desirable sampling and analysis methods for analyzing particulate organic nitrogenous compounds are suggested.

Fast SHVC Decoder using PU-based On-the-fly Up-Sampling (PU 기반 On-the-fly 업샘플링을 이용한 SHVC 복호화기 고속화 방법)

  • Kim, Seoung-Hwi;Lee, Dongkyu;Chae, Chan-Yup;Sim, Donggyu;Kang, Jung-Won;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.110-113
    • /
    • 2015
  • SHVC(Scalable High efficiency Video Coding)는 다양한 멀티미디어 서비스 환경에서 높은 코딩 효율을 위해 공간적, 시간적, 화질적 스케일러빌리티를 이용한 표준 기술이다. SHVC는 멀티-계층 부/복호화를 수행하기 때문에 싱글-계층인 HEVC(High Efficiency Video Coding) 보다 추가적인 복잡도를 요구한다. 본 논문에서는 SHVC 복호화기의 복잡도를 분석하고 SHVC 복호화기에서 높은 복잡도를 차지하는 프레임 기반 업샘플링을 PU 기반 On-the-fly 업샘플링(On-the-fly Up-sampling) 방법과 SIMD 연산을 통해 고속화 한다. 제안하는 알고리즘이 적용된 SHVC 복호화기는 기존 SHVC 복호화기의 복호화 시간보다 평균 1.23배 고속화 성능을 보이며 업샘플링의 복잡도가 24.7%에서 1.9%로 감소하였다. On-the-fly 업샘플링 과정은 기존 프레임 레벨 업샘플링 과정 대비 평균 90.3% 수행시간 감소율을 보인다.

  • PDF

Classification of Objects using CNN-Based Vision and Lidar Fusion in Autonomous Vehicle Environment

  • G.komali ;A.Sri Nagesh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.67-72
    • /
    • 2023
  • In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.