• 제목/요약/키워드: unsupervised deep learning

검색결과 102건 처리시간 0.027초

Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles

  • Jung, Juho;Park, Manbok;Cho, Kuk;Mun, Cheol;Ahn, Junho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.3955-3971
    • /
    • 2020
  • Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-driving operations. While existing map technologies may assist vehicles in identifying their locations via Global Positioning System, it is however difficult to update the environmental changes of roadways in these maps. Roadway vision algorithms can be useful for building autonomous vehicles that can avoid accidents and detect real-time location changes. We incorporate a hybrid architectural design that combines unsupervised classification of vision data with supervised joint fusion classification to achieve a better noise-resistant algorithm. We identify, via a deep learning approach, an intelligent hybrid fusion algorithm for fusing multimodal vision feature data for roadway classifications and characterize its improvement in accuracy over unsupervised identifications using image processing and supervised vision classifiers. We analyzed over 93,000 vision frame data collected from a test vehicle in real roadways. The performance indicators of the proposed hybrid fusion algorithm are successfully evaluated for the generation of roadway digital maps for autonomous vehicles, with a recall of 0.94, precision of 0.96, and accuracy of 0.92.

비지도학습 기반 자동 특허문서 분류 시스템 (Unsupervised learning-based automated patent document classification system)

  • 김상백;김지호;이홍철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.421-422
    • /
    • 2021
  • 국내·외 기업들의 기술을 보호하고자 매년 100만개의 특허가 출원되고 있다. 등록된 특허 수가 증가될수록 전문가의 판단만으로 원하는 기술 분야의 유효한 특허문서를 선별하는 것은 효율적이지 않으며 객관적인 결과를 기대하기 어려워진다. 본 연구에서는 유효 특허문서 분류 정확성과 전문가의 업무 효율성을 제고하고자 비지도학습 모델인 잠재 디리클레 할당 알고리즘(Latent Dirichlet Allocation, LDA)과 딥러닝을 활용하여 자동 특허문서 분류 시스템을 제안하고자 한다.

  • PDF

CutMix 알고리즘 기반의 일반화된 밀 머리 검출 모델 (Generalized wheat head Detection Model Based on CutMix Algorithm)

  • 여주원;박원준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.73-75
    • /
    • 2024
  • 본 논문에서는 밀 수확량을 증가시키기 위한 일반화된 검출 모델을 제안한다. 일반화 성능을 높이기 위해 CutMix 알고리즘으로 데이터를 증식시켰고, 라벨링 되지 않은 데이터를 최대한 활용하기 위해 Fast R-CNN 기반 Pseudo labeling을 사용하였다. 학습의 정확성과 효율성을 높이기 위해 사전에 훈련된 EfficientDet 모델로 학습하였으며, OOF를 이용하여 검증하였다. 최신 객체 검출 모델과 IoU(Intersection over Union)를 이용한 성능 평가 결과, 제안된 모델이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF

딥러닝을 이용한 3차원 사람모델형상 변형 (3D Human Shape Deformation using Deep Learning)

  • 김대희;황본우;이승욱;곽수영
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.19-27
    • /
    • 2020
  • 최근 가상현실 및 증강 현실 기술을 이용한 다양한 응용분야가 각광받으면서 빠르고 정확한 3차원 모델 생성이 요구되고 있다. 본 논문에서는 옷을 입은 3차원 사람 모델을 포인트 클라우드의 형상으로 변형하는 온-사이트 학습 (On-site learning) 기반 형상 변형 방법을 제안한다. 제안하는 알고리즘은 사전 학습과 온-사이트 학습 두 개의 파트로 구성되어 있으며, 각각의 학습은 인코더 네트워크, 템플릿 변형 네트워크, 디코더 네트워크로 구성된다. 딥러닝 네트워크 학습은 3차원 포인트 클라우드와 템플릿 정점 사이의 챔퍼 거리 (Chamfer distance)를 주요 손실 함수로 사용하는 비지도 학습을 적용한다. 입력된 포인트 클라우드 형태의 데이터에 대해 온-사이트 학습을 진행함으로써 추론의 결과물에 대한 높은 정확도를 얻을 수 있으며 이를 실험을 통해 제시한다.

농산물 생산성 향상을 위한 딥러닝 기반 농업 의사결정시스템 (The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity)

  • 박진욱;안희학;이병관
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.521-530
    • /
    • 2018
  • 본 논문에서 제안하는 "농산물 생산성 향상을 위한 딥러닝 기반 농업 의사결정 시스템"에서는 정밀농업을 지원하는 농장의 위치 정보를 기반으로 기상 정보를 수집하고, 수집한 기상 정보와 농작물의 실시간 데이터를 이용하여, 작물의 현재 상태를 예측하고 그 결과를 농장 관리인에게 알려준다. 제안하는 시스템은 첫째, 정밀농업을 지원하는 농장의 위치 정보를 기반으로 기상 정보를 수집하는 ICM(Information Collection System)을 설계하고, 둘째, 딥러닝 알고리즘을 기반으로 현재 날씨에 따라 농장 토지의 탄소, 수소, 산소, 질소, 수분 함유량이 재배하고 있는 작물에 적합특정 작물을 재배하기 좋은 상태인지 판단하는 DRCM(Deep learning based Risk Calculation Module)을 설계하고, 셋째, DRCM의 결과를 기반으로 사용자에게 작물의 상태를 점검할 것을 알려주는 메시지를 전송하는 RNM(Risk Notification Module)을 설계한다. 제안하는 시스템은 기존의 시스템과 비교하였을 때, 데이터양의 증가로 인해 발생하는 정확도 감소 비율이 낮고, 분석 단계에 비지도학습을 적용하기 때문에 안정성을 향상 시킬 수 있다. 결과적으로 농장 데이터 분석 성공률이 약 5.15%가량 향상되었고, 환경 변화에 따른 작물 성장의 위험한 상태정보 다양하게 적용하였을 때, 위험한 상태정보에 대하여 상세하게 추론할 수 있었다. 이는 다양한 내 외부 환경으로부터 발생할 수 있는 작물의 질병을 미연에 예방할 수 있고, 작물이 성장하는데 최적화된 환경을 제공할 수 있는 효과를 나타낸다.

LSTM Autoencoder를 이용한 자기상관 공정의 모니터링 절차 (Procedure for monitoring autocorrelated processes using LSTM Autoencoder)

  • 지평진;이재헌
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.191-207
    • /
    • 2024
  • 자기상관 공정에서 이상상태를 빠르게 탐지하는 절차에 대해 많은 연구가 진행되어 왔다. 가장 전통적인 절차는 관측된 데이터에 대해 적합한 시계열 모형에서 계산된 잔차를 이용하는 잔차 관리도이다. 그러나 최근에는 통계적 학습 방법을 이용하여 자기상관 공정을 모니터링하는 절차가 많이 제안되었다. 이 논문에서는 딥러닝에 기반한 비지도 학습 방법인 LSTM Autoencoder의 잠재 벡터를 이용한 모니터링 절차를 제안하고, 이를 모의실험을 통해 LSTM Autoencoder의 복원 오차를 이용한 절차, RNN 분류 모니터링 절차, 그리고 잔차 관리도 절차의 성능과 비교하였다. 모의실험 결과, 제안된 절차와 RNN 분류 모니터링 절차의 성능은 유사하지만, 제안된 절차는 학습에 이상상태의 데이터가 필요하지 않기 때문에 이상상태의 데이터를 충분하게 확보할 수 없는 공정에 유용하게 적용할 수 있다는 장점이 있다.

치매 환자를 위한 딥러닝 기반 이상 행동 탐지 시스템 (Deep Learning-based Abnormal Behavior Detection System for Dementia Patients)

  • 김국진;이승진;김성중;김재근;신동일;신동규
    • 인터넷정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.133-144
    • /
    • 2020
  • 고령화로 인해 증가하는 노인 비율만큼이나 치매를 앓는 노인 수 또한 빠르게 늘고 있는데 이는 사회적, 경제적 부담을 발생시킨다. 특히, 간병인의 근무 시간 손실 및 간호 부담으로 인한 의료 비용 증가와 같은 간접비용을 포함하는 치매 관리 비용은 수년에 걸쳐 기하급수적으로 증가하고 있다. 이러한 비용을 줄이기 위해 치매 환자를 돌보기 위한 관리 시스템 도입이 시급하다. 따라서 본 연구는 항상 치매 환자를 돌볼 수 없는 환경이나 독거노인을 관리하기 위한 센서 기반 이상 행동 탐지 시스템을 제안한다. 기존 연구들은 단지 행동을 인지하거나 정상 행동 여부를 평가하는 정도였고 센서로부터 받은 데이터가 아닌 이미지를 처리하여 행동을 인지한 연구도 있었다. 본 연구에서는 실데이터 수집에 한계가 있음을 인지하여 비지도 학습 모델인 오토인코더와 지도 학습 모델인 장·단기 기억 모형을 동시에 사용했다. 비지도 학습 모델인 오토인코더는 정상 행동 데이터를 학습하여 정상적인 행동에 대한 패턴을 학습시켰고 장·단기 기억 모형은 센서로 인지 가능한 행동을 학습시켜 분류를 좀 더 세분화했다. 테스트 결과 각각의 모델은 약 96%, 98% 이상의 정확도를 도출하였고 오토인코더의 이상치가 3% 이상을 갖는 경우 장·단기 기억 모형을 통과하도록 설계했다. 이 시스템을 통해 혼자 사는 노인이나 치매 환자를 효율적으로 관리할 수 있으며 돌보기 위한 비용 또한 절감할 수 있을 것으로 전망된다.

이종 디바이스 환경에 효과적인 신규 딥러닝 기반 프로파일링 부채널 분석 (Novel Deep Learning-Based Profiling Side-Channel Analysis on the Different-Device)

  • 우지은;한동국
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.987-995
    • /
    • 2022
  • 딥러닝 기반 프로파일링 부채널 분석은 사전에 소비전력과 같은 부채널 정보와 중간값과의 관계를 신경망이 학습한 뒤, 학습된 신경망을 이용하여 공격 파형의 비밀키를 찾아내는 기법이다. 최근에는 실제 부채널 분석 환경을 고려하기 위하여 교차 디바이스 환경에서의 분석 방안들이 제안되고 있다. 그러나 이러한 환경은 프로파일링 디바이스와 공격 디바이스의 칩이 다르면 공격 성능이 낮아지는 한계점이 존재한다. 따라서 본 논문에서는 공격자가 프로파일링 디바이스와 다른 칩을 가지는 공격 디바이스를 가지고 있는 환경을 이종 디바이스라고 정의하고, 이러한 환경을 고려한 분석 방안을 제안하고자 한다. 프로파일링 데이터와 공격 데이터에서 발생하는 도메인 차이를 줄이기 위해 비지도 도메인 적응을 사용하였다. 또한, 각 데이터의 특징을 잘 추출하기 위하여 여러 전처리 데이터와 원본 데이터를 학습하는 신경망 구조인 MCNN를 이용하였다. 이종 디바이스 환경을 구성하기 위해 8-bit 기반 프로세서 1개, 32-bit 기반 프로세서 5개를 이용하여 AES-128 전력 파형을 수집하였다. 제안한 방법론을 적용한 신경망과 적용하지 않은 신경망의 공격 성능을 비교했을 때, 제안한 방법론을 적용한 신경망의 최소 분석 파형 수가 최대 25배 이상 낮아졌다.

A Study on the Classification of Variables Affecting Smartphone Addiction in Decision Tree Environment Using Python Program

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.68-80
    • /
    • 2022
  • Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.