• Title/Summary/Keyword: unstructured data

Search Result 723, Processing Time 0.032 seconds

Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method (비정렬 유한 체적법을 이용한 횡류홴 유동장 해석)

  • Kang, Dong-Jin;Bae, Sang-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.7-15
    • /
    • 2005
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate aye carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW ANALYSIS (이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung M. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.135-139
    • /
    • 2005
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoil including relative motion. Validation were made by comparing the predicted results with those of experiments or other researcher's numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION (상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung Mun-Seung;Kwon Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

DEVELOPMENT OF A LARGE EDDY SIMULATION METHOD ON UNSTRUCTURED MESHES (비정렬 격자를 이용한 LES 기법 개발)

  • Lee, K.S.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.106-109
    • /
    • 2006
  • A large eddy simulation with explicit filters on unstructured mesh is presented. Two explicit filters are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically eddy viscosity model which depends on the explicitly filtered fields and needs no additional ad hoc wall treatment such as van Driest damping function. As a validation problem, the flows around a sphere at several Reynolds numbers, including laminar and turbulent regimes, are calculated and compared to experimental data and numerical results in the literature.

  • PDF

Computation of 3-Dimensional Unseady Flows Using an Parallel Unstructured Mesh (병렬화된 비정렬 격자계를 이용한 3차원 비정상 유동 계산)

  • Kim Joo Sung;Kwon Oh Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.59-62
    • /
    • 2002
  • In the present study, solution algorithms for the computation of unsteady flows on an unstructured mesh are presented. Dual time stepping is incorporated to achieve the 2-nd order temporal accuracy while reducing the linearization and the factorization errors associated with a linear solver. Hence, any time step can be used by only considering physical phenomena. Gauss-Seidel scheme is used to solve linear system of equations. Rigid motion and spring analogy method fur moving mesh are all considered and compared. Special treatments of spring analogy for high aspect ratio cells are presented. Finally, numerical results for oscillating wing are compared with experimental data.

  • PDF

LARGE EDDY SIMULATION OF THE FLOW AROUND A SPHERE WITH UNSTRUCTURED MESH (비정렬 격자를 이용한 구 주위의 큰에디 모사)

  • Lee, K.S.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.41-44
    • /
    • 2007
  • A large eddy simulation method with unstructured mesh is presented. Two explicit filtering procedures are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically an eddy viscosity model which depends on both local velocity fluctuation level and local grid scale. As a validation problem, the flows around a sphere of several Reynolds numbers are simulated and some characteristic quantities are compared to experimental data and numerical results in the literature.

  • PDF

Numerical Analysis for Linear and Nonlinear Attenuation Characteristics of Exhaust Silencer Systems (배기 소음기의 선형 및 비선형 감쇄 특성에 대한 수치해석)

  • 김종태;김용모;맹주성;류명석;구영곤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.179-189
    • /
    • 1996
  • An unstructured grid finite-volume method has been applied to predict the linear and nonlinear attenuation characteristics of the expansion chamber silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically complex flow regions associated with the actual silencers, the unstructured mesh algorithm in context with the node-centered finite volume method has been employed. The present numerical model has been validated by comparison with the analytical solutions and the experimental data for the acoustic field of the concentric expansion chamber with and without pulsating flows, as well as the axisymmetric blast flowfield with open end. Effects of the chamber geometry on the nonlinear wave attenuation characteristics is discussed in detail.

  • PDF

Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method (비정렬 유한 체적법을 이용한 횡류 홴 유동장 해석)

  • Kang Dong-Jin;Bae Sang-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.27-35
    • /
    • 2006
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate are carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.

Text Document Classification Scheme using TF-IDF and Naïve Bayes Classifier (TF-IDF와 Naïve Bayes 분류기를 활용한 문서 분류 기법)

  • Yoo, Jong-Yeol;Hyun, Sang-Hyun;Yang, Dong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.242-245
    • /
    • 2015
  • Recently due to large-scale data spread in digital economy, the era of big data is coming. Through big data, unstructured text data consisting of technical text document, confidential document, false information documents are experiencing serious problems in the runoff. To prevent this, the need of art to sort and process the document consisting of unstructured text data has increased. In this paper, we propose a novel text classification scheme which learns some data sets and correctly classifies unstructured text data into two different categories, True and False. For the performance evaluation, we implement our proposed scheme using $Na{\ddot{i}}ve$ Bayes document classifier and TF-IDF modules in Python library, and compare it with the existing document classifier.

  • PDF

MPIL: Market prediction through image learning of unstructured and structured data (비정형, 정형 데이터의 이미지 학습을 활용한 시장예측)

  • Lee, Yoon Seon;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.16-21
    • /
    • 2021
  • Financial time series analysis plays a very important role economically and socially in modern society and is an important task affecting global development, but due to difficulties such as a lot of noise and uncertainty, financial time series analysis prediction is a difficult research topic. In this paper, we propose a market prediction method (MPIL) by converting unstructured data and structured data into images. For market prediction, it analyzes SNS and news data, which is unstructured data for n days, and converts the market data, which is structured data, to an image with the GADF algorithm, and predicts an ultra-short market that predicts the price of n+1 days through image learning. MPIL has an average accuracy of 56%, which is higher than the 50% average accuracy of the model that predicts the market with LSTM by using sentiment analysis used for existing market forecasting.