• Title/Summary/Keyword: unsteady combustion

Search Result 191, Processing Time 0.024 seconds

LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit (버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF

A Heat Release Model of Turbulent Premixed Flame Response to Acoustic Perturbations (유동 섭동에 의한 난류예혼합화염의 열발생 모델에 관한 연구)

  • Cho, Ju-Hyeong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.413-420
    • /
    • 2008
  • The unsteady heat release characteristics play a significant role in combustion instabilities observed in low emissions gas turbine combustors. Such combustion instabilities are often caused by coupling mechanisms between unsteady heat release rates and acoustic perturbations. A generalized model of the turbulent flame response to acoustic perturbations is analytically formulated by considering a distributed heat release along a curved mean flame front and using the flame's kinematic model that incorporates the turbulent flame development. The effects of the development of flame speed on the flame transfer functions are examined by calculating the transfer functions with a constant or developing flame speed. The flame transfer function due to velocity fluctuation shows that, when a developing flame speed is used, the transfer function magnitude decreases faster with Strouhal number than the results with a constant flame speed at low Strouhal numbers. The flame transfer function due to mixture ratio fluctuation, however, exhibits the opposite results: the transfer function magnitude with a developing flame speed increases faster than that with a constant flame speed at low Strouhal numbers. Oscillatory behaviors of both transfer function magnitudes are shown to be damped when a developing flame speed is used. Both transfer functions also show similar behaviors in the phase characteristics: The phases of both transfer functions with a developing flame speed increase more rapidly than those with a constant flame speed.

A Study on the Imfluence of the Pipe Line of Boiler for Flame Distribution of Combustion Furnace (연소로의 화염분포가 보일러 관로에 미치는 영향에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1435-1441
    • /
    • 2014
  • The fire took place in the synthetic heat transfer fluid boiler used in production process of medium density fiberboard. This study investigated pressure distribution of the first, second and third passes and the temperature in the fire burner. The boiler's internal fluid is unsteady due to the out of order inverter. As the operation continues, the flame's flow and speed are unsteady. The synthetic heat transfer fluid leak spouted about 120kg/min in the form of vapor in the early period of the fire. The flame extended to the second and third passes. The highest temperature of the second and third pass is $1059^{\circ}C$ and $1007^{\circ}C$, respectively. The synthetic heat transfer fluid spouted through the cracked part of the fire box in the first pass and accumulated on the turn table. Therefore, it is expected that the temperature of the interior of the fire box is above $1200^{\circ}C$. The temperature of the burner rises to a maximum level several times in a short period. On account of that, several explosions occur in the fire burner. Pressure distribution at steady state in combustion furnace is 2~5mAq and pressure distribution at inverter under fault condition in combustion furnace is 10~-53mAq. The decrement of coil thickness measurement for synthetic heat transfer fluid boiler is 0~5mm.

A Case Study on Combustion Instability of a Model Lean Premixed Gas Turbine Combustor with Open Source Code OSCILOS (온라인 개방코드 OSCILOS를 이용한 모델 희박 예혼합 가스터빈 연소기의 연소불안정 해석 사례)

  • Cha, Dong Jin;Song, Jin Kwan;Lee, Jong Geun
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.10-18
    • /
    • 2015
  • Combustion instability is a major issue in design and maintenance of gas turbine combustors for efficient operation with low emissions. With the thermoacoustic view point the instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to study the combustion dynamics of gas turbine combustors, Morgans et al (2014) have developed OSCILOS (open source combustion instability low order simulator) code and it is currently available online. In this study the code has been utilized to predict the combustion instability of a reported case for lean premixed gas turbine combustion, and then its prediction results have been compared with the corresponding experimental data. It turned out that both the predicted and the experimental combustion instability results agree well. Further the effects of some typical inlet acoustic boundary conditions on the prediction have been investigated briefly. It is believed that the validity and effectiveness of the open source code is reconfirmed through this benchmark test.

Numerical Simulation of Self-excited Combustion Oscillation in a Dump Combustor with Bluff-body (둔체를 갖는 연소기에서 자려 연소 진동에 관한 수치해석)

  • Kim, Hyeon-Jun;Hong, Jung-Goo;Kim, Dae-Hee;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.659-668
    • /
    • 2008
  • Combustion instability has been considered as very important issue for developing gas turbine and rocket engine. There is a need for fundamental understanding of combustion instability. In this study, combustion instability was numerically and experimentally investigated in a dump combustor with bluff body. The fuel and air mixture had overall equivalence ratio of 0.9 and was injected toward dump combustor. The pressure oscillation with approximately 256Hz was experimentally obtained. For numerical simulation, the standard k-$\varepsilon$ model was used for turbulence and the hybrid combustion model (eddy dissipation model and kinetically controlled model) was applied. After calculating steady solution, unsteady calculation was performed with forcing small perturbation on initial that solution. Pressure amplitude and frequency measured by pressure sensor is nearly the same as those predicted by numerical simulation. Furthermore, it is clear that a combustion instability involving vortex shedding is affected by acoustic-vortex-combustion interaction. The phase difference between the pressure and velocity is $\pi$/2, and that between the pressure and heat release rate is in excitation range described by Rayleigh, which is obvious that combustion instability for the bluff body combustor meets thermoacoustic instability criterion.

대향분출류가 있는 맥동연소기의 비 정상 점화현상

  • 이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.259-265
    • /
    • 1997
  • An analytical study has been peformed to investigate the unsteady ignition characteristics of pulse combustion. In many combustion applications, strain rate of the flow can significantly affect the combustion features; ignition, extinction, and reignition. In the pulse combustion, two jets (hot combustion gases and fresh mixtures) coming from the opposite side of the combustor will collide in the combustor forming a stagnation region where the chemical reaction is suppressed by the strain rate until this becomes below the critical value. In this research, the method of large activation energy asymptotic is adopted with one step irreversible kinetics to examine the ignition response to the periodic variation of the strain rate of flow. The results show the variation of the maximum value of strain rate can determine whether the ignition or extinction occur.

  • PDF

Experiments for Combustion Analysis of Hybrid Motor (하이브리드 모터의 연소해석을 위한 실험연구)

  • 하윤호;장선용;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.262-265
    • /
    • 2003
  • This Study is focused on the instrumenting Hybrid Rocket Motor of ACPL at Konkuk University and researching combustion instability by measuring regression rate versus oxidizer mass flux. In the result of experiment, test fire was moderate and we could acquire data of pressure, thrust, and temperature of combustion chamber. In the future, studying unsteady change of regression rate and pressure characteristic analysis of combustion chamber through hundreds of experiments should be performed. furthermore, researching characteristic velocity by taking a measurement of combustion temperature will be inevitable.

  • PDF

A Combustion Instability Analysis of a Gas Turbine Combustor Having Closed Acoustic Boundaries at Both Ends (폐음향 경계조건을 갖는 가스터빈 연소기의 연소불안정 해석)

  • Cha, Dong-Jin;Shin, Dong-Myung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.156-164
    • /
    • 2010
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a gas turbine combustion system, which shows the validity and effectiveness of the approach.

A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber (돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구)

  • Lee Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

A Combustion Instability Analysis of a Model Gas Turbine Combustor for Co-generation (열병합발전용 모델 가스터빈 연소기의 연소불안정 해석)

  • Cha, Dong-Jin;Shin, Dong-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1449-1457
    • /
    • 2009
  • Combustion instability is a major issue in design of co-generation gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of co-generation gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a simple co-generation gas turbine combustion system, which shows the validity and effectiveness of the approach.

  • PDF