• Title/Summary/Keyword: unsaturated zone

Search Result 133, Processing Time 0.023 seconds

A Study on Stress Corrosion Cracking of Fiber Reinforced Composite by Slow Strain Rate Test (저변형률시험법에 의한 섬유강화 복합재료의 응력부식균열에 관한 연구)

  • Lim, Jae-Gyu;Choi, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3433-3440
    • /
    • 1996
  • This paper was investigation of the stres corrosion cracking(SCC) mechanism and the properties of corrosion fracture surface of glass fiber reinforced plastics(GFRP) produced by hand lay up(HLU) method in synthetic sea water. Test material is GFRP, that was used vinylester type epoxy acrylate resin and an unsaturated polyester as the matrix and the chopped strand mat(CSM) type E-glss fiber as the reinforcement. The slow strain rate test(SSRT) was performed on dry, wet and saturated wet specimens in sea water. Here the pH concentration of synthetic sea water was 8.2 and the strain rate is 1 x $10^{-6}$($sec^{-1}$) and test temperature ranges varied from $-60^{\circ}C$ to $80^{\circ}C$. It could be confirmed the fact that wet specimens tested at a particular test temperature ranges were appeared the eviences of SCC such as con-planar, mirror and hackle zone. Moreover, SCC of GFRP in sea water was characterised by falt fracture surfaces with only small amounts of fiber pull-out, in partial.

대기압의 변화에 따른 휘발성 오염물질의 토양에서 대기로의 거동

  • Choi Ji-Won;Smith James A.;Hwang Gyeong-Yeop
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.114-116
    • /
    • 2005
  • Natural attenuation has been actively studied and often selected as final clean-up process in remediation of contaminated ground-water and soil for the last decade. Accordingly, understanding of natural processes affecting the fate and transport of contaminants in the subsurface becomes important for a success of implementation of the natural remediation strategy, Contaminant advection and diffusion processes in the unsaturated zone are naturally related to environmental changes in the atmosphere. The atmospheric pressure changes affecting the transport of contaminants in the subsurface are investigated in this study. Moisture content, trichloroethylene (TCE) concentration, temperature, and pressure variations in the subsurface were measured for the July, August, November, and December 2001 at Picatinny Arsenal, New Jersey. These data were used for a one-phase flow and one-component transport model in simulating the soil-gas flow and accordingly the TCE transport in the subsurface in accordance with the atmosphere pressure variations at the surface. The soil-gas velocities during the sampling periods varied with a magnitude of $10^{-6}\;to\;10^{-7}\;m\;s^{-1}$ at land surface. The TCE advection fluxes at land surface were several orders of magnitude smaller than the TCE diffusion fluxes. A sensitivy analysis indicated that advection fluxes were more sensitive to changes in geo-environmental conditions compared to diffusion fluxes. Of all the parameters investigated in this study, moisture content has the most significant effect on TCE advection and diffusion fluxes.

  • PDF

Regionalized Sensitivity Analysis of Extended TOPMODEL (확장 TOPMODEL의 영역화 민감도 분석)

  • Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.741-755
    • /
    • 1998
  • An extension of TOPMODEL was developed for rainfall-runoff simulation in agricultural watersheds equipped with tile drains. Tile drain functions are incorporated into the framework of TOPMODEL. Nine possible flow generation scenarios are suggested for tile drained watershed and applied in the modeling procedure. In the model development process, the traditional physically based storage approach and a new approach using a transfer function for the simulation of the flow in the unsaturated zone were compared. In order to provide better insight into the simulation process, a regionalized sensitivity analysis was performed to test the performance of the model and to compare the behavior of the transfer function to that of the simple storage related formulation. The results of analysis show good performance of the transfer function approach. Since the rainfall-runoff response pattern tends to vary seasonally, seven events distributed throughout a year were used in the sensitivity analysis to investigate the seasonal variation of the hydrologic characteristics. It is found that the sensitivity of each parameter described by the model are varied seasonally.

  • PDF

Development of a Transient Groundwater Flow Model in Pyoseon Watershed of Jeju Island: Use of a Convolution Method (컨벌루션 기법을 이용한 제주도 표선유역 부정류 지하수 흐름 모델 개발)

  • Kim, Seung-Gu;Koo, Min-Ho;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.481-494
    • /
    • 2015
  • Groundwater level hydrographs from observation wells in Jeju island clearly illustrate distinctive features of recharge showing the time-delaying and dispersive process, mainly affected by the thickness and hydrogeologic properties of the unsaturated zone. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. Recently, a convolution model was suggested as a mathematical technique to generate time series of recharge that incorporated the time-delaying and dispersive process. A groundwater flow model was developed to simulate transient groundwater level fluctuations in Pyoseon area of Jeju island. The model used the convolution technique to simulate temporal variations of groundwater levels. By making a series of trial-and-error adjustments, transient model calibration was conducted for various input parameters of both the groundwater flow model and the convolution model. The calibrated model could simulate water level fluctuations closely coinciding with measurements from 8 observation wells in the model area. Consequently, it is expected that, in transient groundwater flow models, the convolution technique can be effectively used to generate a time series of recharge.

Evaluation of Contaminant Concentrations in Wet and Dry Seasons during Pump-and-Treat Pilot Tests

  • Jeon, Woo-Hyun;Lee, Jin-Yong;Kwon, Hyung-Pyo;Jun, Seong-Chun;Cheon, Jeong-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.18-31
    • /
    • 2013
  • This study was performed to examine use of the pump-and-treat method for remediation of TCE, CF and CT in groundwater contaminated by DNAPL. The Woosan industrial complex is located in Wonju, about 120 km east of Seoul, Korea. Two pumping wells (KDPW7 and KDPW8) and five monitoring wells (KDMW7, KDMW8, KDMW9, KDMW10, and SKW2) were installed for the test. An asphalt laboratory is a main source of the extensive subsurface contamination at this site. To evaluate change in the concentrations of TCE, CF, and CT in groundwater in the study area, three rounds of pump-and-treat pilot tests were performed (6 July to 6 August, 22 August to 6 September, and 19 September to 2 December in 2011). The groundwater levels and the concentrations of TCE, CF, and CT exhibited negative correlations in the wet season but positive correlations in the dry season, which suggests that the TCE concentrations were mainly controlled by dilution through rainfall during the wet season and by residual TCE, CF, and CT in the unsaturated zone during the dry season. These possibilities should be considered in the full-scale remediation plan.

Simulation of the Migration of 3H and 14C Radionuclides on the 2nd Phase Facility at the Wolsong LILW Disposal Center

  • Ha, Jaechul;Son, Yuhwa;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.439-455
    • /
    • 2020
  • Numerical model was developed that simulates radionuclide (3H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.

Proposal of Design Method for Landslides Considering Antecedent Rainfall and In-situ Matric Suction (선행강우와 현장 모관흡수력을 고려한 산사태 해석 방법 제안)

  • Kim, Jung-Hwan;Jeong, Sang-Seom;Kim, Yong-Min;Lee, Kwang-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.11-24
    • /
    • 2013
  • This study presents a design method for typical rainfall-induced landslide considering in-situ matric suction. Actual landslide data are used to validate the proposed method. The soil-water characteristic curve (SWCC) and unsaturated permeability are experimentally determined to estimate hydraulic properties of testing site. The field measurement of matric suction is carried out to monitor in-situ matric suction in a natural slope subjected to rainfall infiltration, which is incorporated in the landslide analysis. The wetting band depth and safety factor of the slope are assessed to clarify the effect of domestic rainfall pattern. Especially, the effect of antecedent rainfall on the slope stability is investigated and discussed in terms of wetting band depth using parametric study. It is found from the result of this study that proposed design method can consider the characteristic of unsaturated soil and effect of antecedent rainfall. The location of the scarp zone is fairly well predicted by proposed design method. Moreover, heavy rainfall, concentrated in the backward part with time, causes the lowest safety factor of the slope. These results demonstrate that decrease in matric suction due to antecedent rainfall may trigger slope instability. After the antecedent rainfall, additional rainfall may cause the slope failure due to increasing wetting band depth.

Applicability of the DAWAST Model Considered Return flows (용수 수요를 고려한 DAWAST 모형의 적용성 평가)

  • Noh, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1097-1107
    • /
    • 2003
  • The DAWAST model was originally developed to consider the variation of water storage in the unsaturated soil zone and it is a conceptual lumped model. Return flows from agricultural, domestic and industrial water were included to the original result of model simulation to calibrate model parameters of watershed runoff. Agricultural water demand was estimated only in paddy fields supposing that return flow responded at stream was originated from paddy fields. Domestic and industrial water demand was estimated by average daily water demand multiplied monthly variation coefficient. Daily inflow to the Daechung multipurpose dam was applied to verify the DAWAST model considered return flows. On annual average from 1983 to 2001, inflows were simulated to 652.5 mm with return flows considered, which was approached more closer to observed inflow of 667.3 mm, compared with case of 606.8 mm with return flows not considered.

Estimation for application of the Runoff Analysis using TOPMODEL at an ungaged watershed (미계측유역에 대한 TOPMODEL의 적용성 평가)

  • Kang, Sung-Jun;Park, Young-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1458-1464
    • /
    • 2011
  • This study is on the application of TOPMODEL-topographic based hydrologic model-to the runoff analysis, The test area was the ssang-chi watershed which is mountainous catchment located in the upstream of the sumjin-gang basin and the watershed area is $126.7km^2$. The six's hourly runoff and precipitation data was selected in the 2006 ~ 2009 year. And the model parameters are calibrated using observed runoff data by Pattern Search method. The topographic index of the ssang-chi catchment was produced by digital elevation model(DEM) of 100m grid. As a results of the analysis, the parameters of model, a decay facter(m), transmissivity(T0), and the unsaturated zone delay(TD) are sensible to hydrologic response, and the simulated runoff data are in good agreement with observed runoff data.

Sulfur Cycle in the Rehabilitated Forest Catchment in Tanakami Mountain, Kansai District, Japan (일본 칸사이 지방 타나카미 산지의 황폐지 복구 산림유역 내 황(黃)순환에 관한 연구)

  • Kim, Su-Jin;Ohte, Nobuhito;Park, Jong-Kwan
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • To understand the sulfur flux and cycle in the forest catchment, the hydrological processes and chemical variation of soil solution, groundwater and stream water were analyzed at the Matsuzawa catchment located in the Kiryu Experimental Basin, Shiga Prefecture, central Japan. Unsaturated soil layer at the upper slope of catchment was the source area of ${SO_4}^{2-}$, and deep soil layer and groundwater were the sink zone of ${SO_4}^{2-}$. The vertical distribution of ${SO_4}^{2-}$ concentrations in groundwater affected seasonal variation of ${SO_4}^{2-}$ concentrations in stream water, as groundwater level changed. It is reasonable to assume that each hydrological processes in the forest catchment play an important roles in the retention and discharge of ${SO_4}^{2-}$.