• Title/Summary/Keyword: unmanned system

Search Result 1,722, Processing Time 0.027 seconds

Design and Development of Multi-rotorcraft-based Unmanned Prototypes of Personal Aerial Vehicle

  • Muljowidodo, Muljowidodo;Budiyono, Agus
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.140-147
    • /
    • 2009
  • The paper presents the design, development and testing activities of the multi-rotorcraft-based unmanned aerial vehicle at the Center for Unmanned System Studies, Institut Teknologi Bandung (ITB), Indonesia. The multi-rotor system was selected as the design stepping stone for future development of personal aerial vehicle prototypes. A step-by-step design program is conducted to study the technology building blocks and critical issues associated with the design, development and operation of personal aerial vehicles. A number of multi-rotor configurations have been investigated providing basic guidelines for developing a stable unmanned aerial platform. The benefit of the presently selected configuration is highlighted and some preliminary testing results are presented.

Embedded Real-Time Software Architecture for Unmanned Autonomous Helicopters

  • Hong, Won-Eui;Lee, Jae-Shin;Rai, Laxmisha;Kang, Soon-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.243-248
    • /
    • 2005
  • The UAV (Unmanned Aerial Vehicle) systems like unmanned autonomous helicopters are used in various missions of flight navigation and used to collect the environmental information of the surroundings. To realize the full functionalities of the UAV, the software part becomes a challenging problem. In this paper embedded real-time software architecture for unmanned autonomous helicopter is proposed that guarantee real-time performance of hard-real time tasks and re-configurability of soft-real time and non-real time tasks. The proposed software architecture has four layers: hardware, execution, service agent and remote user interface layer according to the reactiveness level for external events. In addition, the layered separation of concurrent tasks makes different kinds of mission reconfiguration possible in the system. An Unmanned autonomous helicopter system was implemented (Kyosho RC Helicopter) in our lab to test and evaluate the performance of the proposed system.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance

  • Kim, Sang-Gyum;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.932-937
    • /
    • 2003
  • In this paper, we will explain about the unmanned vehicle control and modeling for combined obstacle avoidance and lane tracking. First, obstacle avoidance is considered as one of the important technologies in the unmanned vehicle. It is consisted by two parts: the first part includes the longitudinal control system for the acceleration and deceleration and the second part is the lateral control system for the steering control. Each system uses to the obstacle avoidance during the vehicle moving. Therefore, we propose the method of vehicle control, modeling and obstacle avoidance. Second, we describe a method of lane tracking by means of vision system. It is important in the unmanned vehicle and mobile robot system. In this paper, we deal with lane tracking and image processing method and it is including lane detection method, image processing algorithm and filtering method.

  • PDF

MEMS GPS/INS Navigation System for an Unmanned Ground Vehicle Operated in Severe Environment (극한 무인 로봇 차량을 위한 MEMS GPS/INS 항법 시스템)

  • Kim, Sung-Chul;Hong, Jin-Seok;Song, Jin-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2007
  • An unmanned ground vehicle can perform its mission automatically without human control in unknown environment. To move up to a destination in various surrounding situation, navigational information is indispensible. In order to be adopted for an unmanned vehicle, the navigation box is small, light weight and low power consumption. This paper suggests navigation system using a low grade MEMS IMU for supplying position, velocity, and attitude of an unmanned ground vehicle. This system consists of low cost and light weight MEMS sensors and a GPS receiver to meet unmanned vehicle requirements. The sensors are basically integrated by loosely coupled method using Kalman filter and internal algorithms are divided into initial alignment, sensor error compensation, and complex navigation algorithm. The performance of the designed navigation system has been analyzed by real time field test and compared to commercial tactical grade GPS/INS system.

Flight Scenario Trajectory Design of Fixed Wing and Rotary Wing UAV for Integrated Navigation Performance Analysis (통합항법 성능 분석을 위한 고정익, 회전익 무인항공기의 비행 시나리오 궤적 설계)

  • Won, Daehan;Oh, Jeonghwan;Kang, Woosung;Eom, Songgeun;Lee, Dongjin;Kim, Doyoon;Han, Sanghyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • As the use of unmanned aerial vehicles increases, in order to expand the operability of the unmanned aerial vehicle, it is essential to develop an unmanned aerial vehicle traffic management system, and to establish the system, it is necessary to analyze the integrated navigation performance of the unmanned aerial vehicle to be operated. Integrated navigation performance is affected by various factors such as the type of unmanned aerial vehicle, flight environment, and guidance law algorithm. In addition, since a large amount of flight data is required to obtain high-reliability analysis results, efficient and consistent flight scenarios are required. In this paper, a flight scenario that satisfies the requirements for integrated navigation performance analysis of rotary and fixed-wing unmanned aerial vehicles was designed and verified through flight experiments.

Study on Revision of Aviation Safety act for RPAS (무인항공기 안전운용을 위한 항공안전법 개정방향에 대한 연구)

  • Hong, Hye-Jung;Han, Jae-Hyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.65-93
    • /
    • 2020
  • With the development of information and communication technology, the unmanned aerial vehicle industry began to attract attention as a new growth industry as it entered the fourth industrial revolution. As the size of the unmanned aerial vehicles and the scope of airspace vary from small drones to large unmanned aerial vehicles, the developed countries such as USA and Europe are developing plans for the integrated operation of manned and unmanned aerial vehicles. ICAO is also working on amendments to the relevant ICAO annexes to establish international standards and recommendations for unmanned aerial vehicles. Korea also needs to prepare for the integrated operation of manned and unmanned aerial vehicles that will come in the future, and for this purpose, it is necessary to review and revise the national regulation systems for the safe operation of unmanned aerial vehicles. This study analyzes the amendments of related annexes discussed on the Remotely Piloted Aircraft System (RPAS) pannel, and suggests the direction of revision of the Aviation Safety Act for the safe operation of unmanned aerial vehicles in comparison with the existing Aviation Safety Act.

Study of Population Dynamics of Birds Using Unmanned Monitoring System in Rice Paddy (무인모니터링 시스템을 활용한 논습지에 도래하는 조류 개체군 동태 연구)

  • Nam, Hyung-Kyu;Kim, Myung-Hyun;Kwon, Soon-Ik;Eo, Jinu;Song, Young-Ju
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.124-130
    • /
    • 2018
  • This study was conducted to identify the characteristics of bird population dynamics using unmanned monitoring system in rice paddy. We compared the similarity of population dynamics of birds between unmanned monitoring system and field survey, and evaluated the spatial and temporal patterns of population dynamics of birds using the unmanned monitoring system. The monitoring using the system was conducted from January 1, 2014 to December 31, 2016 in Cheolwon, Dangjin, Buan, and Heanam. The images from the system were obtained at 10-min intervals from 6:00 to 20:00. The field survey was conducted once a month in Dangjin from January to December 2016. Total 91,980 images were obtained from the unmanned monitoring system. We extracted the number of individuals for herons, shorebirds, and waterfowl from the images. The population dynamics of waterbirds using the unmanned monitoring system were similar to that in field survey. Especially, population dynamics of herons was more similar than other waterbirds. It was identified that the population dynamics of herons using the unmanned monitoring system was different among the Cheolwon, Dangjin, Buan, and Heanam. Furthermore, the unmanned monitoring system was available on various time scale such as month, day, and minute. It is expected that long-term data storage using the unmanned monitoring system can be used to identify in detail and forecast the population dynamics of birds in rice paddy.

The Korea Development Trend of Unmanned Combat Vehicles in developed country (선진국의 무인전투차량 개발동향)

  • Hwang, Gwang-Tak;Gang, Shin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1831-1837
    • /
    • 2014
  • Unmanned combat vehicles is recognized as a key tool to utilize the military combat power in the area of science and technology. It can be expected to minimize the lose of human life and increase the military power. Unmanned combat systems are based on the complex operation concept and the unit system can be manufactured by combination on unmanned combat vehicles. For the unmanned combat systems, military power exists to sustain the acquisition establishment system and unmanned technology, which is considered to give the suitability such as application area.

Development of Operational Requirements of Remote Control Interfaces for Unmanned Ground Combat Vehicles (지상무인전투차량 원격제어 인터페이스 운용 요구사항 개발)

  • Jo, Seongsik;Baik, Seungwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.18-25
    • /
    • 2017
  • The use of unmanned combat systems is of interest for future battlefield. Advanced techniques are being actively studied to build fully autonomous unmanned systems. However, there are technical, ethical and legal limitations for the fully autonomous unmanned combat systems. In addition, a remote controlled system is necessary so far in order to prepare for situations where fully autonomous unmanned systems fail to function properly. Thus, a procedure of developing operational requirements in system level is proposed and interface requirements of unmanned combat vehicles for remote control are described in this study.

A Study on the Site Selection of Unmanned Post Office Considering the Operation Cost by the Mail Volume (우편물량 규모에 따른 운영비용 기준의 무인화 대상우체국 선정에 관한 연구)

  • Choi, Jiyoung;Lee, Jeong-hun
    • Korean Management Science Review
    • /
    • v.33 no.3
    • /
    • pp.1-18
    • /
    • 2016
  • Recently, ordinary mail is decreasing continuously by the development of ICT (Information and Communications Technology) including E-mail, messenger service, and etc. On the contrary, parcel post is increasing by the increase of online shopping, home shopping, and etc. Aside from these changes, the demand for various mail acceptance and delivery means is increasing with the increase of single households and dual-income couples. To overcome these environmental changes, Korea Post installs unmanned post offices which are composed of various unmanned mail acceptance and delivery postal systems. In this paper, we propose the methodological approach for the site selection of unmanned post office among the existing post offices and the installation standard of unmanned postal system considering the operation cost by the mail volume.