• Title/Summary/Keyword: unmanned control system

Search Result 750, Processing Time 0.034 seconds

Implement module system for detection sudden unintended acceleration (자동차급발진을 감지하기 위한 모듈 시스템 구현)

  • Cha, Jea-Hui;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.255-257
    • /
    • 2017
  • These days automotive markets are launching models that include a variety of IT technologies. Tesla's Tesla model S and Google's unmanned automobiles are emerging one after another. This type of automobile with IT technology provides various convenience to the driver and the driver is getting benefit by various conveience services. on the contrary, it is also true that defects for errors in electronic components cause accidents that threaten the safety of drivers. There is a sudden unintended acceleration among these accidents. The cause of the accident is not clear yet, but the claim that the ECU device caused by the magnetic field causes accident of the car due is the most reliable. But, in Korea, when occur a car sudden unintended acceleration accident, the char maker often claims that an accident occurred due to driver's pedal malfunction. Also most drivers are responsible for the lack of grounds to refute. In this paper, the pedal operation image of the driver is acquired and the sensor is attached to the control part such as the excel and brake so as to discriminate whether the vehicle sudden unintended acceleration accident is the driver's pedal operation error or the fault of. i have implemented a system that can do this.

  • PDF

Study on the Occupational Group and Essential Educational Elements of Future Seafarer Suitable for Industry 4.0 (4차 산업에 적합한 미래 해기사의 직업군과 필수 교육 요소에 관한 연구)

  • Kim, Sanghee;Park, Hankyu;Ha, Minjae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1013-1022
    • /
    • 2022
  • Recently, with the worldwide development of the fourth industry, the development of technologies for smart and eco-friendly ships is accelerating. With the emergence of autonomous vessels with complete unmanned or minimum personnel on board and eco-friendly fuel (methane, ammonia, electricity, etc.), the role of existing seafarers on board is expected to change significantly. To improve the competitiveness of seafarers in the future, predicting future seafarer occupation groups, improving the educational curriculum, and creating an educational system are necessary. In this study, eight occupational groups that seafarers may have in the future were derived through a review of earlier studies and brainstorming of maritime university students, incumbent seafarers and expert groups. A survey was conducted on the eight occupational groups using the Likert scale, and based on the results, a leading occupational group related to future seafarer was derived. The most likely occupational groups with high scores were remote control centre operators and cargo remote manager. In addition, essential educational elements to be educated first for these occupational groups were derived and presented.

Implementation of Agricultural Multi-UAV System with Distributed Swarm Control Algorithm into a Simulator (분산군집제어 알고리즘 기반 농업용 멀티 UAV 시스템의 시뮬레이터 구현)

  • Ju, Chanyoung;Park, Sungjun;Son, Hyoung Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.37-38
    • /
    • 2017
  • 최근 방제 및 예찰과 같은 농작업에 단일 UAV(Unmanned Aerial Vehicle)시스템이 적용되고 있지만, 가반하중과 체공시간 등 기존시스템의 문제가 점차 대두되면서 작업 시간을 보다 단축시키고 작업 효율을 극대화 할 수 있는 농업용 멀티 UAV시스템의 필요성이 증대되고 있다. 본 논문에서는 작업자가 다수의 농업용 UAV를 효과적으로 제어할 수 있는 분산군집제어 알고리즘을 제안하며 알고리즘 검증 및 평가를 위한 시뮬레이터를 소개한다. 분산군집제어는 UAV 제어 계층, VP(Virtual Point) 제어 계층, 원격제어 계층으로 이루어진 3계층 제어구조를 가진다. UAV 제어 계층에서 각 UAV는 point mass로 모델링 되는 VP의 이상적인 경로를 추종하도록 제어한다. VP 제어 계층에서 각 VP는 입력 $p_i(t)=u^c_i+u^o_i+u^{co}_i+u^h_i$-(1)을 받아 제어되는데 여기서, $u^c_i{\in}{\mathbb{R}}^3$는 VP 사이의 충돌방지제어, $u^o_i{\in}{\mathbb{R}}^3$는 장애물과의 충돌방지제어, $u^{co}_i{\in}{\mathbb{R}}^3$는 UAV 상호간의 협조제어, $u^h_i{\in}{\mathbb{R}}^3$는 작업자로부터의 원격제어명령이다. (1)의 제어입력에서 충돌방지제어는 각 $u^i_c:=-{\sum\limits_{j{\in}{\eta}_i}}{\frac {{\partial}{\phi}_{ij}^c({\parallel}p_i-p_j{\parallel})^T}{{\partial}p_i}}$-(2), $u^o_c:=-{\sum\limits_{r{\in}O_i}}{\frac {{\partial}{\phi}_{ir}^o({\parallel}p_i-p^o_r{\parallel})^T}{{\partial}p_i}}$-(3)로 정의되면 ${\phi}^c_{ij}$${\phi}^o_{ir}$는 포텐셜 함수를 나타낸다. 원격제어 계층에서 작업자는 햅틱 인터페이스를 통해 VP의 속도를 제어하게 된다. 이때 스케일변수 ${\lambda}$에 대하여 VP의 원격제어명령은 $u^t_i(t)={\lambda}q(t)$로 정의한다. UAV 시뮬레이터는 리눅스 환경에서 ROS(Robot Operating Systems)를 기반한 3차원 시뮬레이터인 Gazebo상에 구축하였으며, 마스터와 슬레이브 간의 제어 명령은 TCPROS를 통해 서로 주고받는다. UAV는 PX4 기반의 3DR Solo 모델을 사용하였으며 MAVROS를 통해 MAVLink 통신 프로토콜에 접속하여 UAV의 고도, 속도 및 가속도 등의 상태정보를 받을 수 있다. 현재 멀티 드론 시스템을 Gazebo 환경에 구축하였으며, 추후 시뮬레이터 상에 분산군집제어 알고리즘을 구현하여 검증 및 평가를 진행하고자 한다.

  • PDF

Development of the Operating Cost Estimation Models to Evaluate the Validity of Urban Railway Investment (도시철도 투자타당성 평가를 위한 운영비용 추정모형 개발)

  • KIM, Dong Kyu;PARK, Shin Hyoung;KIM, Ki Hyuk
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.465-475
    • /
    • 2016
  • Since inaccurate demand estimation for recent urban rail construction may result in financial burden to cities, precise prediction for operating cost as well as construction costs is necessary to avoid or reduce budget loss of the local or central government. The operating cost is directly related to the public fare and affect a policy to determine the rate system. Therefore, there is a pressing need to develop an estimating model for reliable operating cost of urban railway. This study introduces a new model to estimate the operating cost with new variables. It provides a better prediction in accuracy and reliability compared to the existing model, considering the feature of urban railway. For verification of our model, railway operation data from a few cities for the last five years were comprehensively examined to determine variables that affect the operating cost. The operating cost was estimated in a dummy regression model using five independent variables, which were average distance between stations, daily trains distance, total passenger capacity of a train in a train, driving mode(manned/unmanned), and investment type(financial/private).

A Study on the Flight Safety Test of Drones for the Establishment of Toy Drone Safety Standards (완구용 드론 안전기준 재정을 위한 드론의 비행 안전성 테스트 연구)

  • Jin, Jung-Hoi;Kim, Gyou-Beom;Jin, Sae-Young
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.141-146
    • /
    • 2019
  • Economic analysis predicts that the drone market will grow, and the growth of the toy and hobby drone market is expected to gradually expand. Drone expectations are rising due to the net economic function of drone market growth, but accidents due to improper management and operations are also increasing. The difference in toy drone performance is incomparably small compared to industrial drone performance, but the ordinary buyer can not know whether the difference can cause an accident during use. The toy drones used in this study were obtained from KC and CE certification, and 20 kinds of drones were used. The flight time ranged from a minimum of 3 minutes to a maximum of 12 minutes, and the control distance ranged from a minimum of 20m to a maximum of 380m. Therefore, it is necessary to secure product safety through sampling inspection of the radio wave output of toy drones, and it is also necessary to mount an algorithm that automatically lowers the altitude or hover when exceeding the limit flight distance. For future research, we will build data to establish toy drone safety standards through a altitude testing and impact testing of toy drone.

Advances, Limitations, and Future Applications of Aerospace and Geospatial Technologies for Apple IPM (사과 IPM을 위한 항공 및 지리정보 기술의 진보, 제한 및 미래 응용)

  • Park, Yong-Lak;Cho, Jum Rae;Choi, Kyung-Hee;Kim, Hyun Ran;Kim, Ji Won;Kim, Se Jin;Lee, Dong-Hyuk;Park, Chang-Gyu;Cho, Young Sik
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.135-143
    • /
    • 2021
  • Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, manned and unmanned aircraft, spectral sensors, information systems, and autonomous field equipment, have been used to detect pests and apply control measures site-specifically. Despite the availability of aerospace and geospatial technologies, along with big-data-driven artificial intelligence, applications of such technologies to apple IPM have not been realized yet. Using a case study conducted at the Korea Apple Research Institute, this article discusses the advances and limitations of current aerospace and geospatial technologies that can be used for improving apple IPM.

A Study on the Changes in Functions of Ship Officer and Manpower Training by the Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 해기사 직능 변화와 인력양성에 관한연구)

  • Lim, Sung-Ju;Shin, Yong-John
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study aims to investigate changes in the demand for ship officers in response to changes in the shipping industry environment in which Maritime Autonomous Surface Ships (MASS) emerge according to the application of the fourth industrial revolution technology to ships, and it looks into changes in the skill of ship officer. It also analyzes and proposes a plan for nurturing ship officers accordingly. As a result of the degree of recognition and AHP analysis, this study suggests that a new training system is required because the current training and education system may cover the job competencies of emergency response, caution and danger navigation, general sailing, cargo handling, seaworthiness maintenance, emergency response, and ship maintenance and management, but tasks such as remote control, monitoring diagnosis, device management capability, and big data analysis require competency for unmanned and shore-based control. By evaluating the importance of change factors in the duties of ship officers in Maritime Autonomous Surface Ships, this study provides information on ship officer educational institutions' response strategies for nurturing ship officers and prioritization of resource allocation, etc. The importance of these factors was compared and evaluated to suggest changes in the duties of ship officers and methods of nurturing ship officers according to the introduction of Maritime Autonomous Surface Ships. It is expected that the findings of this study will be meaningful as it systematically derives the duties and competency factors of ship officers of Maritime Autonomous Surface Ships from a practical point of view and analyzed the perception level of each relevant expert to diagnose expert-level responses to the introduction of Maritime Autonomous Surface Ships.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Investigation of Measurement Feasibility of Large-size Wastes Based on Unmanned Aerial System (UAS 기반 대형 폐기물 발생량 측정 가능성 모색)

  • Son, Seung Woo;Yu, Jae Jin;Jeon, Hyung Jin;Lim, Seong Ha;Kang, Young Eun;Yoon, Jeong Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.809-820
    • /
    • 2017
  • Efficient management of large-size wastes generated from disasters etc. is always in demand. Large-size wastes are closely connected to the environment, producing adverse effects on the air quality, water quality, living environment and so on. When large-size wastes are generated, we must be able to estimate the generated amount in order to transfer them to a temporary trans-shipment site, or to properly treat them. Currently, we estimate the amount of generated large-size wastes by using satellite images or unit measure for wastes; however, the accuracy of such estimations have been constantly questioned. Therefore, the present study was performed to establish three-dimensional spatial information based on UAS, to measure the amount of waste, and to evaluate the accuracy of the measurement. A measurement was made at a waste site by using UAS, and the X, Y, Z RMSE values of the three-dimensional spatial information were found to be 0.022 m, 0.023 m, and 0.14 m, all of which show relatively high accuracy. The amount of waste measured using these values was computed to be approximately $4,273,400m^3$. In addition, the amount of waste at the same site was measured by using Terrestrial LiDAR, which is used for the precise measurement of geographical features, cultural properties and the like. The resulting value was $4,274,188m^3$, which is not significantly different from the amount of waste computed by using UAS. Thus, the possibility of measuring the amount of waste using UAS was confirmed, and UAS-based measurement is believed to be useful for environmental control with respect to disaster wastes, large-size wastes, and the like.