• Title/Summary/Keyword: unmanned aerial vehicle(UAV)

Search Result 802, Processing Time 0.024 seconds

Global Unmanned Aerial Vehicle Utilization Research Trends

  • Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun;Kim, Dong-Pil
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • The rapid development of technologies in unmanned aerial vehicles (UAVs) has led to their use in various areas. UAVs are mainly used for commercial purposes, but their utilization is increasingly important in other areas because their operation cost is less than satellites and aerial imaging. The utilization of UAVs in the environment/ecology area is relatively new. Therefore, identifying the trends of UAV-related spatial information is significant in basic research for UAV utilization. This study quantitatively identified domestic and international research trends related to UAV utilization and analyzed research areas. An attempt was also made to identify upcoming UAV-related topics in the environment/ecology research field using text mining to analyze the bibliographic information of global research literature. Domestic UAV-related studies were classified into seven clusters where basic research on "UAV technology/industry trends" was abundant, and studies on data collection and analysis through UAV remote sensing technology have increased since 2015. Eight clusters were identified for international studies where the most active research area international was "remote sensing technology/data analysis". In addition, Canopy, Classification, Forest, Leaf Area Index, Normalized Difference Vegetation Index, Temperature, Tree, and Atmosphere appeared as the main keywords related to environment and ecology. The appearance frequencies and association strengths were high because the advancement in UAV optical sensor technology and the rapid development of image processing technology enabled the acquisition of data that could not be obtained from existing spatial information. They are recognized as future research topics as related domestic studies have begun corresponding to international research.

Development of a Cooperative Heterogeneous Unmanned System for Delivery Services (물류수송을 위한 이종 협업 무인 시스템 개발)

  • Cho, Sungwook;Lee, Dasol;Jung, Yeondeuk;Lee, Unghui;Shim, David Hyunchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1181-1188
    • /
    • 2014
  • In this paper, we propose a novel concept foran unmanned delivery service using a cooperative heterogeneous unmanned system consisting of a self-driving car and an unmanned aerial vehicle (UAV). The proposed concept is suitable to deliver parcels in high-density and high-rise urban or residential areas. In order to achieve the proposed concept, we will develop acooperative heterogeneous unmanned system. Customers can order goods using a smartphone application and the order information, including the position of the customer and the order time, and the package is transported automatically by the unmanned systems. The system assigns the tasks suitable for each unmanned vehicle by analyzing it based on map information. Performance is validated by experiments consisting of autonomous driving and flight tests in a real environment. For more evaluation, the landing position error analysis is performed using circular error probability (CEP).

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.

Discrete Noise Prediction of Small-Scale Propeller for a Tactical Unmanned Aerial Vehicle (소형 전술급 무인항공기 프로펠러의 이산소음 수치해석)

  • Ryu, Ki-Wahn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.790-798
    • /
    • 2018
  • Discrete noise signals from a small scale tactical unmanned aerial vehicle(UAV) propeller were predicted numerically using time domain approach. Two-bladed 29 inch propeller in diameter and 150 kgf in gross weight were used for main parameters of the UAV based on the actual size of the similar scale vehicle. Panel method and Farassat formula A1 were adopted for aerodynamic and aeroacoustic analysis respectively. Time domain signals of both thickness and loading noises were transformed into frequency domain to analyze the discrete noise characteristics. Directivity pattern in a plane perpendicular to the rotating disc plane and attenuation of noise intensity according to double distance were also presented.

Comparative Accuracy of Terrestrial LiDAR and Unmanned Aerial Vehicles for 3D Modeling of Cultural Properties (문화재 3차원 모델링을 위한 지상 LiDAR와 UAV 정확도 비교 연구)

  • Lee, Ho-Jin;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.179-190
    • /
    • 2017
  • A terrestrial LiDAR survey was conducted and unmanned aerial vehicle(UAV) images were taken for target cultural properties to present the utilization measures of terrestrial LiDAR and UAV in three-dimensional modeling of cultural properties for the identification of the status and restoration of cultural properties. Then the accuracy of the point clouds generated through this process was compared, an overlap analysis of the 3D model was conducted, and a convergence model was created. According to the results, the modeling with terrestrial LiDAR is more appropriate for precise survey because 3D modeling for the detection of displacement and deformation of cultural properties requires an accuracy of mm units. And UAV model has limitation as the impossibility of detailed expression of parts with sharp unevenness such as cracks of bricks. However, it is found that the UAV model has a wide range of modeling and has the advantage of modeling of real cultural properties. Finally, the convergence model created in this study using the advantages of the terrestrial LiDAR model and the UAV model could be efficiently utilized for the basic data development of cultural properties.

Design and Verification of Electrical System for Unmanned Aerial Vehicle through Electrical Load Power Analysis (전원부하분석을 통한 무인항공기 전기시스템 설계 및 검증)

  • Woo, Heechae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.675-683
    • /
    • 2018
  • In this paper, we have proposed a design and verification methods of electrical system and power loads for unmaned aeriel vehicles(UAVs) through electrical load analysis. In order to meet a UAV system requirement and electrical system specifications, we have designed an electrical power system for efficient power supply and distribution and have theoretically analyzed the power loads according to the power consumption and power bus design of UAV. Using electrical system rig, the designed electrical power system has been experimentally verified. Also, we have performed several flight tests to verify the UAV electrical system and power loads. It is concluded that the proposed design and verification method of electrical system for UAV system.

Beacon-Based Indoor Location Measurement Method to Enhanced Common Chord-Based Trilateration

  • Kwak, Jeonghoon;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1640-1651
    • /
    • 2017
  • To make an unmanned aerial vehicle (UAVs) fly in indoor environments, the indoor locations of the UAV are required. One of the approaches to calculate the locations of an UAV in indoor environments is enhanced trilateration using one Bluetooth-based beacon and three or more access points (APs). However, the locations of the UAV calculated by the common chord-based trilateration has errors due to the distance errors of the beacon measured at the multiple APs. This paper proposes a method that corrects the errors that occur in the process of applying the common chord-based trilateration to calculate the locations of an UAV. In the experiments, the results of measuring the locations using the proposed method in an indoor environment was compared and verified against the result of measuring the locations using the common chord-based trilateration. The proposed method improved the accuracy of location measurement by 81.2% compared to the common chord-based trilateration.

A Comparative Study of Image Classification Method to Classify Onion and Garlic Using Unmanned Aerial Vehicle (UAV) Imagery

  • Lee, Kyung-Do;Lee, Ye-Eun;Park, Chan-Won;Na, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.743-750
    • /
    • 2016
  • Recently, usage of UAV (Unmanned Aerial Vehicle) has increased in agricultural part. This study was conducted to classify onion and garlic using supervised classification of a fixed-wing UAV (Model : Ebee) images for evaluation of possibility about estimation of onion and garlic cultivation area using UAV images. Aerial images were obtained 11~12 times from study sites in Changryeng-gun and Hapcheon-gun during farming season from 2015 to 2016. The result for accuracy in onion and garlic image classification by R-G-B and R-G-NIR images showed highest Kappa coefficients for the maximum likelihood method. The result for accuracy in onion and garlic classification showed high Kappa coefficients of 0.75~0.97 from DOY 105 to DOY 141, implying that UAV images could be used to estimate onion and garlic cultivation area.

CNN based dual-channel sound enhancement in the MAV environment (MAV 환경에서의 CNN 기반 듀얼 채널 음향 향상 기법)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1506-1513
    • /
    • 2019
  • Recently, as the industrial scope of multi-rotor unmanned aerial vehicles(UAV) is greatly expanded, the demands for data collection, processing, and analysis using UAV are also increasing. However, the acoustic data collected by using the UAV is greatly corrupted by the UAV's motor noise and wind noise, which makes it difficult to process and analyze the acoustic data. Therefore, we have studied a method to enhance the target sound from the acoustic signal received through microphones connected to UAV. In this paper, we have extended the densely connected dilated convolutional network, one of the existing single channel acoustic enhancement technique, to consider the inter-channel characteristics of the acoustic signal. As a result, the extended model performed better than the existed model in all evaluation measures such as SDR, PESQ, and STOI.

Airborne Antenna Switching Strategy Using Deep Learning on UAV Line-Of-Sight Datalink System

  • Jo, Se-Hyeon;Lee, Woo-Sin;Kim, Hack-Joon;Jin, So-Yeon;Yoo, In-Deok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.11-19
    • /
    • 2018
  • In the Unmanned Aerial Vehicle Line-Of-Sight datalink system, there is a possibility that the communication line is disconnected because line of sight can not be secured by one antenna due to changes in position and posture of the air vehicle. In order to prevent this, both top and bottom of air vehicle are equipped with antennas. At this time, if the signal can be transmitted and received by switching to an antenna advantageous for securing the line of sight, communication disconnection can be minimized. The legacy antenna switching method has disadvantages such that diffraction, fading due to the surface or obstacles, interference and reflection of the air vehicle are not considered, or antenna switching standard is not clear. In this paper, we propose an airborne antenna switching method for improving the performance of UAV LOS datalink system. In the antenna switching method, the performance of each of the upper and lower parts of the mounted antenna according to the position and attitude of the air vehicle is predicted by using the deep learning in an UAV LOS datalink system in which only the antenna except the receiver is duplicated. Simulation using flying test dataset shows that it is possible to switch antennas considering the position and attitude of unmanned aerial vehicle in the datalink system.