• Title/Summary/Keyword: unknown input estimator

Search Result 21, Processing Time 0.026 seconds

Time-delayed State Estimator for Linear Systems with Unknown Inputs

  • Jin Jaehyun;Tahk Min-Jea
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.117-121
    • /
    • 2005
  • This paper deals with the state estimation of linear time-invariant discrete systems with unknown inputs. The forward sequences of the output are treated as additional outputs. In this case, the rank condition for designing the unknown input estimator is relaxed. The gain for minimal estimation error variance is presented, and a numerical example is given to verify the proposed unknown input estimator.

Adaptive Estimator for Tracking a Maneuvering Target with Unknown Inputs (미지의 입력을 갖는 기동표적의 추적을 위한 적응 추정기)

  • Kim, Kyung Youn
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.34-42
    • /
    • 1998
  • An adaptive state and input estimator for the tracking of a target with unknown randomly switching input is developed. In modeling the unknown inputs, it is assumed that the input sequence is governed by semi-Markov process. By incorporating the semi-Markov probability concepts into the Bayesian estimation theory, an effective adaptive state and input estimator which consists of parallel Kalman-type filters is obtained. Computer simulation results reveal that the proposed adaptive estimator have improved tracking performance in spite of the unknown randomly switching input.

  • PDF

Nonlinear structural system wind load input estimation using the extended inverse method

  • Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.451-464
    • /
    • 2013
  • This study develops an extended inverse input estimation algorithm with intelligent adaptive fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying larger input wind load. Numerical simulation cases involving different input wind load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads.

Substructure based structural damage detection with limited input and output measurements

  • Lei, Y.;Liu, C.;Jiang, Y.Q.;Mao, Y.K.
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.619-640
    • /
    • 2013
  • It is highly desirable to explore efficient algorithms for detecting structural damage of large size structural systems with limited input and output measurements. In this paper, a new structural damage detection algorithm based on substructure approach is proposed for large size structural systems with limited input and output measurements. Inter-connection effect between adjacent substructures is treated as 'additional unknown inputs' to substructures. Extended state vector of each substructure and its unknown excitations are estimated by sequential extended Kalman estimator and least-squares estimation, respectively. It is shown that the 'additional unknown inputs' can be estimated by the algorithm without the measurements on the substructure interface DOFs, which is superior to previous substructural identification approaches. Also, structural parameters and unknown excitation are estimated in a sequential manner, which simplifies the identification problem compared with other existing work. Structural damage can be detected from the degradation of the identified substructural element stiffness values. The performances of the proposed algorithm are demonstrated by several numerical examples and a lab experiment. Measurement noise effect is considered. Both the simulation results and experimental data validate that the proposed algorithm is viable for structural damage detection of large size structural systems with limited input and output measurements.

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

  • Lee, Ming-Hui;Chen, Tsung-Chien
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in the input force estimation cases of the plate structure system. The proposed algorithm is further compared by alternating between the constant and adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target tracking capability, and more effective noise and measurement bias reduction.

Fuzzy Estimator for Gain Scheduling and its Application to Magnetic Suspension

  • Lee, S.H.;J.T. Lim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.382-382
    • /
    • 2000
  • The external force disturbance is the one of the main causes that deteriorate the performance of the magnetic suspension. Thus, this paper develops a fuzzy estimator for gain scheduling control of magnetic suspension systems suffering from the unknown disturbance. The proposed fuzzy estimator computes the disturbance injected to the plant and the gain scheduled controller generates the corresponding stabilizing control input associated with the estimated disturbance. In the simulation results we confirm the novelty of the proposed control scheme comparing with the other method using a feedback linearization.

  • PDF

Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay (가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링)

  • Lee, K.;Chung, S.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF

Fuzzy Estimator for Gain Scheduling and its Appliation to Magnetic Suspension

  • Lee, Seon-Ho;Lim, Jong-Tae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.106-110
    • /
    • 2001
  • The external force disturbance is the one of the main causes that deteriorate the performance of the magnetic suspension. Thus, this paper develops a fuzzy estimator for gain scheduling control of magnetic suspension system suffering from the unknown disturbance. The propose fuzzy estimator computes the disturbance injected to the plant the gain scheduled controller generates the corresponding stabilizing control input associated with estimated disturbance. In the simulation results we confirm the novelty of the proposed control scheme comparing with the other method using a feedback linearization.

  • PDF

A Study on the State Estimaion of Dynamic system using Fuzzy Estimator (퍼지 추정기에의한 동적 시스템의 상태 추정에 관한 연구)

  • 문주영;박승현;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.350-355
    • /
    • 1997
  • The problem of mathematical model for an unknown system by measureing its input-output data pairs is generally referred to as state estimates. The state estimation problem is often of importance in its own right since we may want to know the value of the states. For instance, in navigation, we may take noisy positional fixes using satelite or radar navigation, and the estimator can use these measurements to provide accurate estimates of current position, hedaing, and velocity. And the state estimates can also be used for control purposes. Then it is very important to know the state of plant. In this paper, the theory of the minimization of a loss function was used to design the fuzzy system. Here, the used teory is Least Square Esimation method. This parametrization has the Linear in the parameters charcteristic that allows standard parameter estimation technique to be used to estimate the parameters of the fuzzy system. The combination of the fuzzy system and the estimation m thod then performs as a nonlinear estimator. If several fuzzy label are defined for the input variables at the antecedent part, the fuzzy system then behaves as a collection of nonlinear estimators where different regions of rules have different parameters. In simulation results, the fuzzy model controlled a difference in the structure between the actual plant and the fuzzy estimator. It is also proved that the fuzzy system is equivalent to its transformed system. therefore we was able to get the state space equation of system with the estimated paramater.

  • PDF