• Title/Summary/Keyword: university revolution

Search Result 2,170, Processing Time 0.027 seconds

A Study on Consumers' Intention to Continue Use of Unmanned Stores in the Non-face-to-face Era : Focusing on the Moderating Effect of COVID-19 Social Risk (비대면시대 소비자의 무인점포 지속적이용의도에 관한 연구: COVID-19 사회적 위험의 조절효과를 중심으로)

  • Oh, Jong-chul
    • Journal of Venture Innovation
    • /
    • v.3 no.2
    • /
    • pp.1-21
    • /
    • 2020
  • Recently, the emergence of new technologies caused by the Fourth Industrial Revolution caused a great change not only in the overall society but also in the retail industry. In the retail industry, unmanned stores based on new technologies have emerged, changing the consumption behavior of consumers. In particular, the global pandemic caused by COVID-19, which appeared in December 2019, raised social risks, and as a result of this, the beginning of the non-face-to-face era, interest in unmanned stores is increasing. In this study, the effects of benefits factors (perceived usefulness, perceived economics, perceived enjoyment, relative advantages) and sacrifice factors (perceived risk, technicality) perceived by unmanned store users on continuous use intention through perceived value. In addition, it is a study to test through empirical analysis what role the social risk from COVID-19 plays in the process of consumption through unmanned stores. The purpose of this study is to provide strategic implications for the activation of unmanned stores in the non-face-to-face era. In this study, a total of 293 copies of data were collected for users of unmanned stores for hypothesis testing. In addition, the collected data was analyzed using SPSS 21.0 and AMOS 21.0 statistical programs. The results of the study are summarized as follows. First, it was found that the perceived benefits (perceived usefulness, perceived economics, perceived playfulness, and relative advantages) of unmanned stores all had a significant positive effect on perceived value. Second, it was found that all perceived sacrifices (perceived risk, technicality) of unmanned stores had a significant negative effect on perceived value. Third, it was found that the perceived value of unmanned stores had a significant positive effect on the intention to continue use. Finally, the social risk from COVID-19 has been shown to play a moderating role when the perceived sacrifice of unmanned stores affects the perceived value.

A Study on Improving Survival of Bombina orientalis through Escape Facilities in Artificial Canals (무당개구리의 인공 수로 내 수로 탈출시설을 통한 생존성 향상에 대한 연구)

  • Jung-Hoon Bae;Young-Don Ju;Sul-Woong Shim;Yang-Seop Bae
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Amphibians are a taxonomic group that ecologically connects terrestrial ecosystems and aquatic ecosystems. They play a very important role in the food chain of the ecosystem. It is known that there are about 5,948 species distributed all over the world, but after the Industrial Revolution, due to industrialization and urbanization, there has been a decrease in species and populations. In particular, it is becoming a factor in exacerbating habitat fragmentation or fragmentation due to artificial canals. In orderto improve the survivalrate of wild animals in artificial canals, escape facilities are installed to reduce it. This study analyzed the slope, height of the escape facility, escape rate, and travel distance in the operating facility for Bombina orientalis, which mainly inhabits near forests. The slope of the escape facility showed a relatively similar escape success rate regardless of height at 50° and 60°, while at 70°, it showed a relatively high escape success rate at only 40cm in height. The success rate of escape from the waterway escape facility in operation was 14.71%, showing a very low utilization rate, and the recognition rate of the artificial canal escape facility was found to be very low as it moved along the side wall of the artificial canal. Therefore, in the case of a waterway escape facility for Bombina orientalis, it is possible to construct it at an angle of 60°, and if the side walls of the artificial canals are built within 60°, Bombina orientalis can move freely in both directions, overcoming the low utilization rate of existing waterway escape facilities. It is expected to minimize the impact of movement and death of artificial canals. In addition, if the spacing between escape facilities is narrowed from the installation standard of 30m and ramps are constructed in both directions upstream and downstream, the escape success rate of amphibians,reptiles, and small mammals otherthan lady frogs is expected to improve.

Application of Digital Content Technology for Veterans Diplomacy (디지털 콘텐츠 기술을 활용한 보훈외교의 발전 방향)

  • So, Byungsoo;Park, Hyungi
    • Public Diplomacy: Theory and Practice
    • /
    • v.3 no.2
    • /
    • pp.35-52
    • /
    • 2023
  • Korea has developed as an influential country over Asia and all over the world based on remarkable economic development. And the background of this development was possible due to the existence of those who sacrificed precious lives and contributed to the nation's existence in the past crisis. Every year, Korea holds an annual commemorative event with people of national merit, Korean War veterans, and their families, expressing gratitude for sacrifices and contributions at home and abroad, and providing economic support. The tragedy of the Korean War and the pro-democracy movement in Korea over the past half century will one day become a history of the distant past over time. As generations change and the purpose and method of exchange by region change, the tragic situation that occurred earlier and the way people sacrificed for the country are expected to be different from before. In particular, it is true that the number of Korean War veterans and their families is gradually decreasing as they are now old. In addition, due to the outbreak of global infectious diseases such as COVID-19, it is difficult to plan and conduct face to face events as well as before. Currently, Korea's digital technology is introducing various methods. 5G communication networks, smart-phones, tablet PCs, and smart devices that can experience virtual reality are already used in our real lives. Business meetings are held in a metaverse environment, and concerts by famous singers are held in an online environment. Artificial intelligence technology has also been introduced in the field of human resource recruitment and customer response services, improving the work efficiency of companies. And it seems that this technology can be used in the field of veterans. In particular, there is a metaverse technology that can vividly show the situation during the Korean War, and a way to digitalize the voices and facial expressions of currently surviving veterans to convey their memories and lessons to future generations in the long run. If this digital technology method is realized on an online platform to hold a veterans' celebration event, veterans and their families on the other side of the world will be able to participate in the event more conveniently.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

A Study on the Effect of the Introduction Characteristics of Cloud Computing Services on the Performance Expectancy and the Intention to Use: From the Perspective of the Innovation Diffusion Theory (클라우드 컴퓨팅 서비스의 도입특성이 조직의 성과기대 및 사용의도에 미치는 영향에 관한 연구: 혁신확산 이론 관점)

  • Lim, Jae Su;Oh, Jay In
    • Asia pacific journal of information systems
    • /
    • v.22 no.3
    • /
    • pp.99-124
    • /
    • 2012
  • Our society has long been talking about necessity for innovation. Since companies in particular need to carry out business innovation in their overall processes, they have attempted to apply many innovation factors on sites and become to pay more attention to their innovation. In order to achieve this goal, companies has applied various information technologies (IT) on sites as a means of innovation, and consequently IT have been greatly developed. It is natural for the field of IT to have faced another revolution which is called cloud computing, which is expected to result in innovative changes in software application via the Internet, data storing, the use of devices, and their operations. As a vehicle of innovation, cloud computing is expected to lead the changes and advancement of our society and the business world. Although many scholars have researched on a variety of topics regarding the innovation via IT, few studies have dealt with the issue of could computing as IT. Thus, the purpose of this paper is to set the variables of innovation attributes based on the previous articles as the characteristic variables and clarify how these variables affect "Performance Expectancy" of companies and the intention of using cloud computing. The result from the analysis of data collected in this study is as follows. The study utilized a research model developed on the innovation diffusion theory to identify influences on the adaptation and spreading IT for cloud computing services. Second, this study summarized the characteristics of cloud computing services as a new concept that introduces innovation at its early stage of adaptation for companies. Third, a theoretical model is provided that relates to the future innovation by suggesting variables for innovation characteristics to adopt cloud computing services. Finally, this study identified the factors affecting expectation and the intention to use the cloud computing service for the companies that consider adopting the cloud computing service. As the parameter and dependent variable respectively, the study deploys the independent variables that are aligned with the characteristics of the cloud computing services based on the innovation diffusion model, and utilizes the expectation for performance and Intention to Use based on the UTAUT theory. Independent variables for the research model include Relative Advantage, Complexity, Compatibility, Cost Saving, Trialability, and Observability. In addition, 'Acceptance for Adaptation' is applied as an adjustment variable to verify the influences on the expected performances from the cloud computing service. The validity of the research model was secured by performing factor analysis and reliability analysis. After confirmatory factor analysis is conducted using AMOS 7.0, the 20 hypotheses are verified through the analysis of the structural equation model, accepting 12 hypotheses among 20. For example, Relative Advantage turned out to have the positive effect both on Individual Performance and on Strategic Performance from the verification of hypothesis, while it showed meaningful correlation to affect Intention to Use directly. This indicates that many articles on the diffusion related Relative Advantage as the most important factor to predict the rate to accept innovation. From the viewpoint of the influence on Performance Expectancy among Compatibility and Cost Saving, Compatibility has the positive effect on both Individual Performance and on Strategic Performance, while it showed meaningful correlation with Intention to Use. However, the topic of the cloud computing service has become a strategic issue for adoption in companies, Cost Saving turns out to affect Individual Performance without a significant influence on Intention to Use. This indicates that companies expect practical performances such as time and cost saving and financial improvements through the adoption of the cloud computing service in the environment of the budget squeezing from the global economic crisis from 2008. Likewise, this positively affects the strategic performance in companies. In terms of effects, Trialability is proved to give no effects on Performance Expectancy. This indicates that the participants of the survey are willing to afford the risk from the high uncertainty caused by innovation, because they positively pursue information about new ideas as innovators and early adopter. In addition, they believe it is unnecessary to test the cloud computing service before the adoption, because there are various types of the cloud computing service. However, Observability positively affected both Individual Performance and Strategic Performance. It also showed meaningful correlation with Intention to Use. From the analysis of the direct effects on Intention to Use by innovative characteristics for the cloud computing service except the parameters, the innovative characteristics for the cloud computing service showed the positive influence on Relative Advantage, Compatibility and Observability while Complexity, Cost saving and the likelihood for the attempt did not affect Intention to Use. While the practical verification that was believed to be the most important factor on Performance Expectancy by characteristics for cloud computing service, Relative Advantage, Compatibility and Observability showed significant correlation with the various causes and effect analysis. Cost Saving showed a significant relation with Strategic Performance in companies, which indicates that the cost to build and operate IT is the burden of the management. Thus, the cloud computing service reflected the expectation as an alternative to reduce the investment and operational cost for IT infrastructure due to the recent economic crisis. The cloud computing service is not pervasive in the business world, but it is rapidly spreading all over the world, because of its inherited merits and benefits. Moreover, results of this research regarding the diffusion innovation are more or less different from those of the existing articles. This seems to be caused by the fact that the cloud computing service has a strong innovative factor that results in a new paradigm shift while most IT that are based on the theory of innovation diffusion are limited to companies and organizations. In addition, the participants in this study are believed to play an important role as innovators and early adapters to introduce the cloud computing service and to have competency to afford higher uncertainty for innovation. In conclusion, the introduction of the cloud computing service is a critical issue in the business world.

  • PDF

A Study on the Utilzation of Two Furrow Combine (2조형(條型) Combine의 이용(利用)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 1976
  • This study was conducted to test the harvesting operation of two kinds of rice varieties such as Milyang #15 and Tong-il with a imported two furrow Japanese combine and was performed to find out the operational accuracy of it, the adaptability of this machine, and the feasibility of supplying this machine to rural area in Korea. The results obtained in this study are summarized as follows; 1. The harvesting test of the Milyang #15 was carried out 5 times from the optimum harvesting operation was good regardless of its maturity. The field grain loss ratio and the rate of unthreshed paddy were all about 1 percent. 2. The field grain loss of Tong-il harvested was increased from 5.13% to 10.34% along its maturity as shown in Fig 1. In considering this, it was needed that the combine mechanism should be improved mechanically for harvesting of Tong-il rice variety. 3. The rate of unthreshed paddy of Tong-il rice variety of which stem was short was average 1.6 percent, because the sample combine used in this study was developed on basisof the long stem variety in Japan, therefore some ears owing to the uneven stem of Tong-il rice could nat reach the teeth of the threshing drum. 4. The cracking rates of brown rice depending mostly upon the revolution speed of the threshing drum(240-350 rpm) in harvesting of Tong-il and Milyang #15 were all below 1 percent, and there was no significance between two varieties. 5. Since the ears of Tong-il rice variety covered with its leaves, a lots of trashes was produced, especially when threshed in raw materials, and the cleaning and the trashout mechanisms were clogged with those trashes very often, and so these two mechanisms were needed for being improved. 6. The sample combine of which track pressure was $0.19kg/cm^2$ could drive on the soft ground of which sinking was even 25cm as shown in Fig 3. But in considering the reaping height adjustment, 5cm sinking may be afford to drive the combine on the irregular sinking level ground without any readjustment of the resaping height. 7. The harvesting expenses per ha. by the sample combine of which annual coverage area is 4.7 ha. under conditions that the yearly workable days is 40, percentage of days being good for harvesting operation is 60%, field efficiency is 56%, working speed is 0.273m/sec, and daily workable hours is 8 hrs is reasonable to spread this combine to rural area in Korea, comparing to the expenses by the conventional harvesting expenses, if mechanical improvement is supplemented so as to harvest Tong-il rice. 8. In order to harvest Tong-il rice, the two furrow combine should be needed some mechanical improvements that divider can control not to touch ears of paddy, the space between the feeding chain and the thrshing drum is reduced, trash treatment apparatus must be improved, fore and rear adjust-interval is enlarged, and width of track must be enlarged so as to drive on the soft ground.

  • PDF

The Effects of Entrepreneurship Mentoring on Entrepreneurial Will and Mentoring Satisfaction: Focusing on Opus Entrepreneurship Education (창업 멘토링 기능이 창업의지와 멘토링 만족도에 미치는 영향: 오퍼스 창업교육을 중심으로)

  • Kim, Ki-Hong;Lee, Chang-Young;Joe, Jee-Hyung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.211-226
    • /
    • 2023
  • As we transition into the post-COVID era, economic activities that were stagnant are regaining momentum. In particular, there is a growing trend of technology entrepreneurship driven by the opportunities of digital transformation in the Fourth Industrial Revolution. However, entrepreneurship education content is struggling to keep up with the rapid pace of technological change. This study aims to emphasize the importance of entrepreneurship mentoring as a crucial component of entrepreneurship education content that requires adaptation and advancement due to the increasing demand for technology entrepreneurship. This study redefines startup mentoring, which is differentiated from general mentoring, at the present time when the demand for startups, which increases with the declining employment rate, increases, and the development of quality startup education contents and securing professional startup mentors are required. According to the start-up stage, it is divided into preliminary entrepreneurs and early entrepreneurs, and the effect of entrepreneurship knowledge and self-efficacy among start-up mentoring functions on entrepreneurial will and mentoring satisfaction is improved by empirically researching the effects of start-up mentoring functions in the case of initial entrepreneurs as a moderating effect. To confirm the importance of entrepreneurship mentoring effect for. To this end, among the mentoring functions, entrepreneurship knowledge and self-efficacy were set as independent variables, and entrepreneurial will and mentoring satisfaction were set as dependent variables. The research model was designed and hypotheses were established. In addition, empirical analysis was conducted by conducting a questionnaire survey on trainees who received entrepreneurship mentoring education at ICCE Startup School and Opus Startup School. To summarize the results of the empirical analysis, first, among the entrepreneurship mentoring functions, entrepreneurship knowledge and self-efficacy were analyzed to have a significant positive (+) effect on entrepreneurial will. Second, among the entrepreneurship mentoring functions, entrepreneurship knowledge and self-efficacy were analyzed to have a significant positive (+) effect on mentoring satisfaction. Third, it was analyzed that entrepreneurship had no significant moderating effect on entrepreneurial knowledge and entrepreneurial will. Fourth, it was analyzed that entrepreneurship had no significant moderating effect on mentoring satisfaction. Fifth, it was found that entrepreneurship had a significant moderating effect between self-efficacy and will to start a business. As a result of the research analysis, the first implication is that the mentoring function in start-up education is analyzed to produce meaningful results for both the initial entrepreneurs and the prospective entrepreneurs in the will to start a business and satisfaction. . Second, it was analyzed that there was no significant relationship between whether a business was started and the mentoring function and effect. However, it was analyzed that the will to start a business through improvement of self-efficacy through mentoring was significantly related to whether or not to start a business. turned out to be helpful. Many start-up education programs currently conducted in Korea educate both early-stage entrepreneurs and prospective entrepreneurs at the same time for reasons such as convenience. However, through the results of this study, even in small-scale entrepreneurship mentoring, it is suggested that customized mentoring through detailed classification such as whether the mentee has started a business can be a method for successful entrepreneurship and high satisfaction of the mentee.

  • PDF

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.