• Title/Summary/Keyword: univariate time series models

Search Result 31, Processing Time 0.024 seconds

단변량 시계열 모형들의 단순 결합의 예측 성능 (Performance for simple combinations of univariate forecasting models)

  • 이선홍;성병찬
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.385-393
    • /
    • 2022
  • 본 논문에서는 시계열 예측 분야에서 잘 알려져 있는 단변량 시계열 모형들을 이용하여, 그들의 단순 조합이 어떤 예측력을 보여주는지 연구한다. 고려된 단변량 시계열 모형으로는, 지수평활 및 ARIMA(autoregressive integrated moving average) 모형들과 그들의 확장된 형태인 모형들 그리고 예측의 벤치마크 모형으로 자주 사용되는 비계절 및 계절 랜덤워크 모형이다. 단순 조합의 방법은 중앙값과 평균을 이용하였으며, 검증을 위하여 사용된 데이터셋은 3,003개의 시계열 자료로 구성된 M3-competition 자료이다. 예측 성능을 sMAPE(symmetric mean absolute percentage error)와 MASE(mean absolute scaled error)로 평가한 결과, 단변량 시계열 모형들의 단순 조합이 아주 우수한 예측력을 가지고 있음을 확인하였다.

다변량 시계열 모형을 이용한 항공 수요 예측 연구 (A Study on Air Demand Forecasting Using Multivariate Time Series Models)

  • 허남균;정재윤;김삼용
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.1007-1017
    • /
    • 2009
  • 본 연구는 최근에 활발히 연구가 진행 중인 항공수요 예측 분야에서 사용되는 계절형 ARIMA 모형과 다변량 계절형 시계열 모형과의 성능을 비교한 것이다. 본 연구에서는 국제 여객 수요와 국제 화물 수요 예측을 위하여 실제 자료를 이용하여 비교한 결과 다변량 계절형 시계열 모형이 예측의 정확도 면에서 기존의 일변량 모형보다 우수함을 보였다.

월유량에 대한 일변량 및 다변량 AR모형의 비교 (A Comparison of Univariate and Multivariate AR Models for Monthly River Flow Series)

  • 이원환;심재현
    • 물과 미래
    • /
    • 제23권1호
    • /
    • pp.99-107
    • /
    • 1990
  • 수자원 개발계획 및 목공구조물의 합리적 설계를 위해서는 과거의 수문관측자료에 의거한 해석이 필요하며, 일반적인 수문현상은 무작위적인 인자가 포함되기 때문에 이를 고려한 통계적 기법, 즉 추계학적 해석기법이 필요하다고 하겠다. 본 연구에서는 남한강 상류의 동일유역 4개 지점(단양, 정선, 영월, 평창)의 월유량 자료를 일변량 AR(1), AR(2)모형과 다변량 AR(1), AR(2)모형에 적용하여 각 모형의 통계적 특성치를 분석하고, 월유량을 모의발생시켜, 일변량 모형과 다변량 모형을 비교하였다. 각각의 모형에 의한 모의발생 계열의 비교, 분석을 통하여 볼 때, 단일지점만을 고려하는 일변량 모형에 비해 지점간의 공선형성을 고려하는 다변량 모형이 동일유역의 월유량 해석에 있어서 더 적합함을 알 수 있었다.

  • PDF

Issues Related to the Use of Time Series in Model Building and Analysis: Review Article

  • Wei, William W.S.
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.209-222
    • /
    • 2015
  • Time series are used in many studies for model building and analysis. We must be very careful to understand the kind of time series data used in the analysis. In this review article, we will begin with some issues related to the use of aggregate and systematic sampling time series. Since several time series are often used in a study of the relationship of variables, we will also consider vector time series modeling and analysis. Although the basic procedures of model building between univariate time series and vector time series are the same, there are some important phenomena which are unique to vector time series. Therefore, we will also discuss some issues related to vector time models. Understanding these issues is important when we use time series data in modeling and analysis, regardless of whether it is a univariate or multivariate time series.

Extending the Scope of Automatic Time Series Model Selection: The Package autots for R

  • Jang, Dong-Ik;Oh, Hee-Seok;Kim, Dong-Hoh
    • Communications for Statistical Applications and Methods
    • /
    • 제18권3호
    • /
    • pp.319-331
    • /
    • 2011
  • In this paper, we propose automatic procedures for the model selection of various univariate time series data. Automatic model selection is important, especially in data mining with large number of time series, for example, the number (in thousands) of signals accessing a web server during a specific time period. Several methods have been proposed for automatic model selection of time series. However, most existing methods focus on linear time series models such as exponential smoothing and autoregressive integrated moving average(ARIMA) models. The key feature that distinguishes the proposed procedures from previous approaches is that the former can be used for both linear time series models and nonlinear time series models such as threshold autoregressive(TAR) models and autoregressive moving average-generalized autoregressive conditional heteroscedasticity(ARMA-GARCH) models. The proposed methods select a model from among the various models in the prediction error sense. We also provide an R package autots that implements the proposed automatic model selection procedures. In this paper, we illustrate these algorithms with the artificial and real data, and describe the implementation of the autots package for R.

Forecasting Exchange Rates: An Empirical Application to Pakistani Rupee

  • ASADULLAH, Muhammad;BASHIR, Adnan;ALEEMI, Abdur Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권4호
    • /
    • pp.339-347
    • /
    • 2021
  • This study aims to forecast the exchange rate by a combination of different models as proposed by Poon and Granger (2003). For this purpose, we include three univariate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Pakistani Rupee against the US dollar by a combination of different forecasting techniques. The observations from M1 2020 to M12 2020 are held back for in-sample forecasting. The models are then assessed through equal weightage and var-cor methods. Our results suggest that NARDL outperforms all individual time series models in terms of forecasting the exchange rate. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models with the lowest MAPE value of 0.612 suggesting that the Pakistani Rupee exchange rate against the US Dollar is dependent upon the macro-economic fundamentals and recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting, as stated by Poon and Granger (2003).

A Development Study for Fashion Market Forecasting Models - Focusing on Univariate Time Series Models -

  • Lee, Yu-Soon;Lee, Yong-Joo;Kang, Hyun-Cheol
    • 패션비즈니스
    • /
    • 제15권6호
    • /
    • pp.176-203
    • /
    • 2011
  • In today's intensifying global competition, Korean fashion industry is relying on only qualitative data for feasibility study of future projects and developmental plan. This study was conducted in order to support establishment of a scientific and rational management system that reflects market demand. First, fashion market size was limited to the total amount of expenditure for fashion clothing products directly purchased by Koreans for wear during 6 months in spring and summer and 6 months in autumn and winter. Fashion market forecasting model was developed using statistical forecasting method proposed by previous research. Specifically, time series model was selected, which is a verified statistical forecasting method that can predict future demand when data from the past is available. The time series for empirical analysis was fashion market sizes for 8 segmented markets at 22 time points, obtained twice each year by the author from 1998 to 2008. Targets of the demand forecasting model were 21 research models: total of 7 markets (excluding outerwear market which is sensitive to seasonal index), including 6 segmented markets (men's formal wear, women's formal wear, casual wear, sportswear, underwear, and children's wear) and the total market, and these markets were divided in time into the first half, the second half, and the whole year. To develop demand forecasting model, time series of the 21 research targets were used to develop univariate time series models using 9 types of exponential smoothing methods. The forecasting models predicted the demands in most fashion markets to grow, but demand for women's formal wear market was forecasted to decrease. Decrease in demand for women's formal wear market has been pronounced since 2002 when casualization of fashion market intensified, and this trend was analyzed to continue affecting the demand in the future.

단변량 시계열모형을 이용한 식음료 수요예측에 관한 연구 - 서울소재 특1급 H호텔 사례를 중심으로 - (Forecasting Demand for Food & Beverage by Using Univariate Time Series Models: - Whit a focus on hotel H in Seoul -)

  • 김석출;최수근
    • 한국조리학회지
    • /
    • 제5권1호
    • /
    • pp.89-101
    • /
    • 1999
  • This study attempts to identify the most accurate quantitative forecasting technique for measuring the future level of demand for food & beverage in super deluxe hotel in Seoul, which will subsequently lead to determining the optimal level of purchasing food & beverage. This study, in detail, examines the food purchasing system of H hotel, reviews three rigorous univariate time series models and identify the most accurate forecasting technique. The monthly data ranging from January 1990 to December 1997 (96 observations) were used for the empirical analysis and the 1998 data were left for the comparison with the ex post forecast results. In order to measure the accuracy, MAPE, MAD and RMSE were used as criteria. In this study, Box-Jenkins model was turned out to be the most accurate technique for forecasting hotel food & beverage demand among selected models generating 3.8% forecast error in average.

  • PDF

Common Feature Analysis of Economic Time Series: An Overview and Recent Developments

  • Centoni, Marco;Cubadda, Gianluca
    • Communications for Statistical Applications and Methods
    • /
    • 제22권5호
    • /
    • pp.415-434
    • /
    • 2015
  • In this paper we overview the literature on common features analysis of economic time series. Starting from the seminal contributions by Engle and Kozicki (1993) and Vahid and Engle (1993), we present and discuss the various notions that have been proposed to detect and model common cyclical features in macroeconometrics. In particular, we analyze in details the link between common cyclical features and the reduced-rank regression model. We also illustrate similarities and differences between the common features methodology and other popular types of multivariate time series modelling. Finally, we discuss some recent developments in this area, such as the implications of common features for univariate time series models and the analysis of common autocorrelation in medium-large dimensional systems.

건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較) (Short-term Construction Investment Forecasting Model in Korea)

  • 김관영;이창수
    • KDI Journal of Economic Policy
    • /
    • 제14권1호
    • /
    • pp.121-145
    • /
    • 1992
  • 본고(本稿)에서는 현재의 경제상황을 잘 반영하는 건설투자활동(建設投資活動)의 단기예측모형(短期豫測模型)을 정립하고자 먼저 관련 시계열자료의 안정성(安定性) 여부(與否)와 순환성(循環性), 계절성(季節性)의 특성을 살펴본 후 여러 단기모형의 예측력(豫測力), 정합성(整合性), 설명력(說明力)을 비교 검토했다. 단위근(單位根) 검정(檢定)과 자기상관계수(自己相關係數) 스펙트랄 밀도함수 분석의 결과, 건설관련 시계열자료들이 대체로 단위근(單位根)을 갖지 않음으로써 안정적이고 주기적인 순환변동을 하고 있으며, 시차변수의 설명력이 높은 특성을 나타내었다. 또한 건설투자자료의 특성이 선행지표(先行指標)인 건축허가연면적(建築許可延面積) 및 건설수주액(建設受注額)과 아주 유사하여 건설투자 단기예측에 있어서 두 지표 사이의 시차관계(時差關係) 파악이 중요함을 알 수 있었다. 제(第)III장(章)에서는 단변량(單變量) 시계열모형(時系列模型)으로 ARIMA모형(模型)과 승법선형추세예측모형(乘法線型趨勢豫測模型)을, 다변량(多變量) 시계열모형(時系列模型)으로는 첫째, 선행지표(先行指標)를 이용한 1차자기회귀모형(次自己回歸模型), VAR모형(模型), 둘째 GNP자료를 이용한 거시경제모형의 단순한 축약형모형(縮約型模型)과 VAR모형(模型)을 제시하고 이들을 비교 평가하였다. 이에 따르면 단변량 시계열모형보다는 다변량 시계열모형이 시간이 경과할수록 예측오차(豫測誤差)가 커지지 않는다는 점에서 우수한 것으로 나타났으며, 다변량모형 중에서도 벡터자기회귀모형이 여타 모형보다 절대예측오차평균(絶對豫測誤差平均), 평균자승근(平均自乘根) 퍼센트 오차(誤差), 결정계수(決定係數) 등 모든 면에서 우수한 것으로 평가되었다. 이는 최근 건설투자가 추세에서 벗어난 급증세를 지속하고 있음을 고려할 때 타당한 결론이라 생각된다.

  • PDF