• Title/Summary/Keyword: uniform strain

Search Result 373, Processing Time 0.023 seconds

Experimental compressive behavior of novel composite wall with different width-to-thickness ratios

  • Qin, Ying;Chen, Xin;Zhu, Xing-Yu;Xi, Wang;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • Double skin composite wall system owns several structural merits in terms of high load-carrying capacity, large axial stiffness, and favorable ductility. A recently proposed form of truss connector was used to bond the steel plates to the concrete core to achieve good composite action. The structural behavior of rectangular high walls under compression and T-shaped high walls under eccentric compression has been investigated by the authors. Furthermore, the influences of the truss spacings, the wall width, and the faceplate thickness have been previously studied by the authors on short walls under uniform compression. This paper experimentally investigated the effect of width-to-thickness ratio on the compressive behavior of short walls. Compressive tests were conducted on three short specimens with different width-to-thickness ratios. Based on the test results, it is found that the composite wall shows high compressive resistance and good ductility. The walls fail by local buckling of steel plates and crushing of concrete core. It is also observed that width-to-thickness ratio has great influence on the compressive resistance, initial stiffness, and strain distribution across the section. Finally, the test results are compared with the predictions by modern codes.

Development and Evaluation of System for 3D Visualization Model of Biological Objects (3차원 생물체 가시화 모델 구축장치 개발 및 성능평가)

  • Hwang, H.;Choi, T. H.;Kim, C. H.;Lee, S. H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.545-552
    • /
    • 2001
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct a biological object to obtain interior and exterior informations, 3D image visualization model from a series of sliced sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D visualization system is presented. The system is composed of three modules. The first module is the handling and image acquisition module. The handling module feeds and slices a cylindrical shape paraffin, which holds a biological object inside the paraffin. And the paraffin is kept being solid by cooling while being handled. The image acquisition modulo captures the sectional image of the object merged into the paraffin consecutively. The second one is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last one is the image processing and visualization module, which processes a series of acquired sectional images and generates a 3D volumetric model. To verify the condition for the uniform slicing, normal directional forces of the cutting edge according to the various cutting angles were measured using a strain gauge and the amount of the sliced chips were weighed and analyzed. Once the 3D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, and scaling including arbitrary sectional view.

  • PDF

Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis

  • Geramizadeh, Maryam;Katoozian, Hamidreza;Amid, Reza;Kadkhodazadeh, Mahdi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • Objectives: This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. Materials and Methods: A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. Results: The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Conclusion: Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling (조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도)

  • Shin, Dong Ku;Cho, Eun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.399-409
    • /
    • 2012
  • The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.

Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys (알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석)

  • 강충길;임미동
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF

Prediction of Flicker for PDP Devices (플라즈마 디스플레이 패널의 플리커 발생에 대한 예측)

  • Jin Guang-Xu;Kang Sung-Ho;Hong Ki-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.9-18
    • /
    • 2005
  • Flicker is the 'variation in brightness or he perceived won stimulation by intermittent or temporally non uniform light'. This phenomenon is blown as the cause of eye strain and headaches. Many researchers are dedicated to reducing this phenomenon. The flicker phenomenon also exists in PDP as some other display types, and is a critical problem in 50 Hz PDP. However, it is difficult to define flicker by more than one subjective judgment. So, an objective measurement of flicker is necessary and convenient for research on displays. In this paper, a computational prediction model is proposed which is used to predict luminance flicker (not chromatic flicker) by giving a quantitative output that describes the probability of occurrence of flicker. Through this work, we expected to provide a practical tool for flicker-free design in PDP.

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

Effect of Light and Feed Restriction During Rearing on Production Performance of Egg Strain Layers

  • Ahsan-ul-haq, Ahsan-ul-haq;Ahmad, Nazir;Rasool, Shahid;Shah, T.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.657-664
    • /
    • 1997
  • 432 Babcock ISA white leghorn pullets reared for 8 weeks on a standard managemental conditions were exposed to feed/nutrient and light restrictions from 9 to 20 weeks of age. Four feeding regimes i. e. 100, 85 or 70 percent of the recommended allowance and low energy (2,500 Kcal/kg) low protein (13% CP) ration were fed each in the three light regimes i. e. (A) Natural day light starting from 13.24 hr/day at 8 weeks of age and ending 10.41 hr/day at the end of 20 weeks; (B) Constant 11 hr/day light and (C) starting with 13 hr/day at 8 weeks and decreasing @ 20 min/week till 20 weeks of age. At the age of 20 weeks all the birds were shifted to separate cages under uniform lighting feeding and management. During the 21st week light was increased to 12 hr a day and thereafter with an increase of 30 min per week, increased to 16 hr a day at the age of 29 weeks. From 20 weeks onward till 72 week age, all the birds were offered commercial layer rations ad libitum, prepared according to climatic conditions. The results of the study revealed that birds reared under natural and constant light had higher weights than decreasing light, yet they could not out perform during production period. The effect of feed and nutrient restriction, on the other hand, was found significant during rearing as well as production period. The birds exposed to higher level of feed and those exposed to nutrient restriction were lighter in weight. The 100% fed birds laid their first egg at an early age. However, those reared on 85% of the recommendation excelled all other groups in terms of produced number of eggs, egg mass, hen housed and hen day production and net returns.

Dietary Protein Restriction on Growth and Immuno-biochemical Response of Crossbred Calves during Post-ruminant Phase of Life

  • Sahoo, A.;Mishra, S.C.;Pathak, N.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1121-1127
    • /
    • 2002
  • Sixteen crossbred (Bos indicus${\times}$Bos taurus) calves were randomly distributed in two groups (NP and LP) of eight calves each to study the effect of restricted (75%) protein supply on growth and immuno-biochemical response as an indicator of production and health of under-nourished animals during 3 to 9 months of age. The normal requirement of protein was provided to group NP and a less of 25% to group LP through calculated amount of concentrate and roughage in their daily ration. Assessment was made for weekly change in live weight, periodic alteration in blood metabolites and immunological status at six months of age in calves. An initial (during 3 to 6 months of age) depression (p<0.05) in growth was seen in low protein fed group (LP) compared to NP, which became non-significant in the later period of life (6 to 9 months of age). There was no significant effect on haemoglobin, total protein, albumin and globulin concentration except that of urea, which was decreased significantly (p<0.05) in animals fed on low protein diet ($19.83{\pm}1.25$ vs $25.93{\pm}1.29mg/dl$). The treatment effect that was seen in different periods of life was not uniform for other parameters except for urea, which showed a regular depression in LP compared to NP. The assessment of immunological status by indirect haemagglutination (IHA) test against Pasteurella multocida (P52 strain) was considerably (p<0.05) reduced in animals on LP ration compared to those on NP. It is thus argued that with poor nutrition (low protein) and state of compromised immunological response the production and health of the animals will be adversely affected.

Effect of $B_2O_3$ Addition on Synthesis of Long Phosphorescent $SrAl_2O_4$:$Eu^{2+}, Dy^{3+}$ Phosphor ($Eu^{2+}, Dy^{3+}$를 도핑한 $SrAl_2O_4$축광성 형광체 합성에 있어서 $B_2O_3$의 첨가 효과)

  • Yu, Yeon-Tae;Kim, Byeong-Gyu;Nam, Cheol-U
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.999-1004
    • /
    • 1998
  • $SrAl_2O_4$:$Eu^{2+}, Dy^{3+}$ 축광성 형광체의 합성에 있어서 $B_2O_3$는 일반적으로 고상반응의 촉진을 위한 플럭스로서 첨가된다. 본 연구에서는 플럭스로 첨가되는 $B_2O_3$$SrAl_2O_4$:$Eu^{2+}, Dy^{3+}$ 형광체의 결정구조 및 잔광 특성에 미치는 영향을 조사하였다. 합성된 $SrAl_2O_4$:$Eu^{2+}, Dy^{3+}$ 형광체는 520nm에서 최대 피크를 갖는 폭넓은 발광 스펙트럼을 나타내었고, $B_2O_3$ 첨가량의 5wt%일 때 최대값을 나타내었다. $B_2O_3$의 첨가에 의해 $SrAl_2O_4$:$Eu^{2+}, Dy^{3+}$ 결정 내부에는 균일 변형(uniform strain)이 발생하였고 이 결과로 결정격자의 a축과 c축의 길이 및 $\beta$각이 감소하여다. 그리고 $SrAl_2O_4$ 결정내부의 균일 변형은 $Eu^{2+}$이온의 여기과정에서 발생하는 정공(hole)의 포획 사이트인 음이온 결함(negative defect)을 다량 발생시키는 원인이 되고, 결과적으로 $SrAl_2O_4$:$Eu^{2+}, Dy^{3+}$ 결정의 잔광 특성을 향상시키는 것으로 생각되었다.

  • PDF