• 제목/요약/키워드: uniform strain

검색결과 372건 처리시간 0.029초

Bending Strain Effect on the Critical Current of Jointed BSCCO Tapes

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.217-217
    • /
    • 2009
  • In this study, the effect of bending strain on the transport property and critical current of lap and butt-jointed BSCCO tapes have been investigated. The samples were joined using a mechanically controlled jointing procedure. In order to ensure a uniform pressure application at the joint part, a single point contact has been devised and also to achieve a uniform thickness at the joint interface.

  • PDF

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제48권2호
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.349-362
    • /
    • 2020
  • Dynamic characteristics of a scale-dependent porous metal foam cylindrical shell under a traveling load have been explored within this article based on a numerical approach. Within the material texture of the metal foams, uniform and non-uniform porosities may be dispersed. Based upon differential quadrature method (DQM) and Laplace transforms, the equations of motion for a shear deformable scale-dependent shell may be solved numerically. Scale-dependent shell modeling has been provided based upon strain gradient elasticity. Solving the equations will give the shell deflection as a function of load speed. Also, it is reported that shell deflection relies on the porosity dispersion and strain gradient influences.

후판압연에 있어서의 변형률 분포예측에 관한 연구 (Study for Prediction of Strain Distribution in Heavy Plate Rolling)

  • 문창호;이덕만;박해두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.96-99
    • /
    • 2007
  • The microstructure with fine and uniform AGS(austenite grain size) along thickness direction over no recrystallization temperature is strongly required for production of the high strength steels. The previous AGS prediction only based on the average strain improves to find the rolling conditions for accomplishment of the fine grain, but cannot find those for uniform grain. In this paper, an integrated mathematical model for prediction of the strain distribution along thickness direction is developed by carrying out finite element simulation for a series of rolling conditions. Also, the AGS distribution after rough rolling is predicted by applying the proposed model with AGS prediction model.

  • PDF

Energy-based evaluation of liquefaction potential of uniform sands

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.145-156
    • /
    • 2019
  • Since behaviors of loose, dense, silty sands vary under seismic loading, understanding the liquefaction mechanism of sandy soils continues to be an important challenges of geotechnical earthquake engineering. In this study, 36 deformation controlled cyclic simple shear tests were performed and the liquefaction potential of the sands was investigated using three different relative densities (40, 55, 70%), four different effective stresses (25, 50, 100, 150 kPa) and three different shear strain amplitudes (2, 3.5, 5%) by using energy based approach. Experiments revealed the relationship between per unit volume dissipated energy with effective stress, relative density and shear strain. The dissipate energy per unit volume was much less affected by shear strain than effective stress and relative density. In other words, the dissipated energy is strongly dependent on relative density and effective stress. These results show that the dissipated energy per unit volume is very useful and may contain the non-uniform loading conditions of the earthquake spectrum. When multiple regression analysis is performed on experiment results, a relationship is proposed that gives liquefaction energy of sandy soils depending on relative density and effective stress parameters.

Mechanical analysis of non-uniform beams resting on nonlinear elastic foundation by the differential quadrature method

  • Hsu, Ming-Hung
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.279-292
    • /
    • 2006
  • A new approach using the differential quadrature method (DQM) is derived for analysis of non-uniform beams resting on nonlinear media in this study. The influence of velocity dependent viscous damping and strain rate dependent viscous damping is investigated. The results solved using the DQM have excellent agreement with the results solved using the FEM. Numerical results indicated that the DQM is valid and efficient for non-uniform beams resting on non-linear media.

Structural response analysis in time and frequency domain considering both ductility and strain rate effects under uniform and multiple-support earthquake excitations

  • Liu, Guohuan;Lian, Jijian;Liang, Chao;Zhao, Mi
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.989-1012
    • /
    • 2016
  • The structural dynamic behavior and yield strength considering both ductility and strain rate effects are analyzed in this article. For the single-degree-of-freedom (SDOF) system, the relationship between the relative velocity and the strain rate response is deduced and the strain rate spectrum is presented. The ductility factor can be incorporated into the strain rate spectrum conveniently based on the constant-ductility velocity response spectrum. With the application of strain rate spectrum, it is convenient to consider the ductility and strain rate effects in engineering practice. The modal combination method, i.e., square root of the sum of the squares (SRSS) method, is employed to calculate the maximum strain rate of the elastoplastic multiple-degree-of-freedom (MDOF) system under uniform excitation. Considering the spatially varying ground motions, a new response spectrum method is developed by incorporating the ductility factor and strain rate into the conventional response spectrum method. In order to further analyze the effects of strain rate and ductility on structural dynamic behavior and yield strength, the cantilever beam (one-dimensional) and the triangular element (two-dimensional) are taken as numerical examples to calculate their seismic responses in time domain. Numerical results show that the permanent displacements with and without considering the strain rate effect are significantly different from each other. It is not only necessary in theory but also significant in engineering practice to take the ductility and strain rate effects into consideration.

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.

탄소섬유보강폴리머의 인장시험시 변형으로부터 환산한 변형률 응답에 대한 연구 (Study on Strain Response Converted from Deformation in Tensile Test of Carbon Fiber Reinforced Polymers (CFRP))

  • 김윤곤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권4호
    • /
    • pp.137-144
    • /
    • 2019
  • 취성재료인 탄소섬유보강폴리머(CFRP)의 시편시험에서 총변형량과 유효길이로서 유도되는 환산변형률을 도입하고, 환산변형률의 장점을 기술하였다. 일반적으로 재료의 인장물성을 결정하기 위해 스트레인 게이지 측정값을 사용하지만, 취성특성을 가지는 CFRP에서는 항상 유효한 것은 아니다. 그 이유는 취성재료에서는 응력재분배를 할 수 없으며, 스트레인 게이지의 측정값은 국부거동만을 나타기 때문이다. 따라서 환산변형률은 취성재료의 인장인장특성의 평균값을 측정하고 변형률과 측정값을 검증하는 보조지표로서 효과적으로 사용될 수 있다. 또한 환산변형률은 1) 제작 오차(편차) 와 세팅 오차(정렬 불량)에 의해 발생하는 초기 내부 변형률에 기인한 영향과 2) 불균일 변형분포로 인한 부분파단 이후 거동을 명확히 가시화하는 장점이 있다.

측면홈 시험편을 이용한 평면 변형률 피로 균열 진전에 관한 연구 (Investigation of Plane Strain Fatigue Crack Growth Behavior by Using Side-Grooved Specimens)

  • 김종한;송지호
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.63-69
    • /
    • 1992
  • 본 연구에서는 특히 앞서 지적한 표면균열의 진전거동에 관한 연구와도 관련 하여 측면홈을 가진 중앙관통균열(side-grooved center cracked tension) 시험편에 대 해 피로균열 진전실험을 수행하고, 평면변형률 조건의 만족여부 및 응력강도계수 평가 방법에 관하여 검토하여 비교적 새로운 결과를 얻었으므로 여기에 보고하고자 한다.