• Title/Summary/Keyword: uniform convergence

Search Result 446, Processing Time 0.028 seconds

Electric Field Optimization using the NURB curve in a Gas-Insulated Switchgear (NURB 곡선을 이용한 가스절연 원통형 관로 내에서의 전계 최적화)

  • Han, In-Su;Kim, Eung-Sik;Min, Suk-Won;Lee, June-Ho;Park, Jong-Keun;Lee, Tae-Hyung;Park, Choon-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.548-558
    • /
    • 2009
  • This paper attempts to develop an algorithm which optimizes the electric field through the so-called NURB(Non-Uniform Rational B-spline) curve in order to improve the insulation capacity. In particular, the NURB curve is a kind of interpolation curve that can be expressed by a few variables. The electric field of a conductor is computed by Charge Simulation Method(CSM) while that of a spacer by Surface Charge Method(SCM); this mixed calculation method is adopted for the electric field optimization. For calculation of the initial and optimal shapes, the Gauss-Newton method, which is quite easy to formulate and has slightly faster convergence rate than other optimization techniques, was used. The tangential electric field, the total electric field, and the product of the tangential electric field and area (Area Effect) were chosen as the optimization objective function by the average value of electric field for the determined initial shape.

Analysis of Shielded Twisted Pair Cable to External Field Coupling by Expanded Chain Matrix Modeling

  • Cho, Yong-Sun;Jung, Hyun-Kyo;Cheon, Changyul;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2049-2057
    • /
    • 2014
  • In this paper, a numerical method for analyzing coupling between high-altitude electromagnetic pulse (HEMP) as external field and a shielded twisted pair (STP) cable is proposed, which is based on an expanded chain matrix. Load responses of electromagnetic (EM) field excitation in uniform transmission line (TL) are solved by Baum-Liu-Tesche (BLT) equations in frequency domain, however, it is difficult to apply BLT equations to solve load responses of STP cable because the iteratively changing configuration of each twisted pairs are involved in cable. To avoid this problem and decrease memory and CPU time, we proposed the expanded chain matrix modeling method that is calculated using ABCD parameters, and applied multi-conductor transmission line (MTL) theory to consider the EMP coupling effectiveness of each twisted pairs. The results implemented by the proposed method are presented and compared with those obtained by the finite-difference time domain (FDTD) method as a kind of 3D full wave analysis.

Noise Reduction Method for Image Using Transition-Parameter of Cellular Automata (셀룰러 오토마타의 천이 파라미터를 이용한 영상의 잡음제거 방법)

  • Kim, Tai-Suk;Lee, Seok-Ki;Kwon, Soon-Kak;Kwon, Oh-Jun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1329-1336
    • /
    • 2010
  • Cellular Automata is a discrete dynamical system which natural phenomena may be specified completely in terms of local relation, can increase and decrease the difference of luminance locally according to transition rule by keeping the characteristic of target image. In this paper, we propose a noise reduction method by keeping the characteristic using transition rule of Cellular Automata, also we propose methods of effective transition rule, the selection of parameters, the selection of number of neighborhood pixels. For uniform distribution noise, Gaussian noise, impulse noise, we do an experiment on adaptive state using different mathematical operations and compare its results. It was confirmed that the proposed transition rule is based on fast convergence speed and has stabile results.

Numerical simulation of wave and current interaction with a fixed offshore substructure

  • Kim, Sung-Yong;Kim, Kyung-Mi;Park, Jong-Chun;Jeon, Gyu-Mok;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.188-197
    • /
    • 2016
  • Offshore substructures have been developed to support structures against complex offshore environments. The load at offshore substructures is dominated by waves, and deformation of waves caused by interactions with the current is an important phenomena. Wave load simulation of fixed offshore substructures in waves with the presence of uniform current was carried out by numerical wave tank technique using the commercial software, FLUENT. The continuity and Navier-Stokes equations were applied as the governing equations for incompressible fluid motion, and numerical wavemaker was employed to reproduce offshore wave environment. Convergence test against grids number was carried out to investigate grid dependency and optimized conditions for numerical wave generation were derived including investigation of the damping effect against length of the damping domain. Numerical simulation of wave and current interactions with fixed offshore substructure was carried out by computational fluid dynamics, and comparison with other experiments and simulations results was conducted.

On the Comparison of Particle Swarm Optimization Algorithm Performance using Beta Probability Distribution (베타 확률분포를 이용한 입자 떼 최적화 알고리즘의 성능 비교)

  • Lee, ByungSeok;Lee, Joon Hwa;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.854-867
    • /
    • 2014
  • This paper deals with the performance comparison of a PSO algorithm inspired in the process of simulating the behavior pattern of the organisms. The PSO algorithm finds the optimal solution (fitness value) of the objective function based on a stochastic process. Generally, the stochastic process, a random function, is used with the expression related to the velocity included in the PSO algorithm. In this case, the random function of the normal distribution (Gaussian) or uniform distribution are mainly used as the random function in a PSO algorithm. However, in this paper, because the probability distribution which is various with 2 shape parameters can be expressed, the performance comparison of a PSO algorithm using the beta probability distribution function, that is a random function which has a high degree of freedom, is introduced. For performance comparison, 3 functions (Rastrigin, Rosenbrock, Schwefel) were selected among the benchmark Set. And the convergence property was compared and analyzed using PSO-FIW to find the optimal solution.

Performance Analysis of CMAP-WDMA MAC Protocol for Metro-WDMA Networks

  • Yun, Chang-Ho;Cho, A-Ra;Park, Jong-Won;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.480-488
    • /
    • 2009
  • A channel-shared modified accelerative pre-allocation wavelength division multiple access (CMAP-WDMA) media access control (MAC) has been proposed for metro-WDMA networks, as an extension of modified pre-allocation wavelength division multiple access (MAP-WDMA) MAC protocol. Similarly, CAP WDMA as an extension of accelerative pre-allocation wavelength division multiple access (AP-WDMA) MAC protocol. Performance of CMAP- and CAP-WDMA was extensively investigated under several channel sharing methods (CSMs), asymmetric traffic load patterns (TLPs), and non-uniform traffic distribution patterns (TDPs). The result showed that the channel utilization of the CMAP-WDMA always outperforms that of CAP-WDMA at the expense of longer channel access delay for channel shared case while CMAP-WDMA provided higher channel utilization at specific network conditions but always shorter channel access delay than CAP-WDMA for non-channel shared case. Additionally both for CMAP- and CAP-WDMA, determining an effective CSM is a critical design issue because TDPs and TLPs can be neither managed nor expected while CSM is manageable, and the CSM supporting the best channel utilization can be recommended.

A Study on the Optimization Strategy using Permanent Magnet Pole Shape Optimization of a Large Scale BLDC Motor (대용량 BLDC 전동기의 영구자석 형상 최적화를 통한 최적화 기법 연구)

  • Woo, Sung-Hyun;Shin, Pan-Seok;Oh, Jin-Seok;Kong, Yeong-Kyung;Bin, Jae-Goo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.897-903
    • /
    • 2010
  • This paper presents a response surface method(RSM) with Latin Hypercube Sampling strategy, which is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed LHS algorithm consists of the multi-objective Pareto optimization and (1+1) evolution strategy. The algorithm is compared with the uniform sampling point method in view points of computing time and convergence. In order to verify the developed algorithm, a 6 MW BLDC motor is simulated with 4 design parameters (arc length and 3 variables for magnet) and 4 constraints for minimizing of the cogging torque. The optimization procedure has two stages; the fist is to optimize the arc length of the PM and the second is to optimize the magnet pole shape by using the proposed hybrid algorithm. At the 3rd iteration, an optimal point is obtained, and the cogging torque of the optimized shape is converged to about 14% of the initial one. It means that 3 iterations aregood enough to obtain the optimal design parameters in the program.

Study on Optimization of Temperature Jump-Bending Process for Reducing Thickness Attenuation of Large-Diameter Steel Pipe (대구경 곡관 두께감소율 제어를 위한 온도점프 벤딩 공정의 최적화에 관한 연구)

  • Xu, Zhe-Zhu;Kim, Lae-Sung;Jeon, Jeong-Hwan;Liang, Long-Jun;Choi, Hyo-Gyu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.21-27
    • /
    • 2015
  • Induction bending is a method that allows the bending of any material that conducts electricity. This technology applies a bending force to a material that has been locally heated by an eddy current induced by a fluctuating electromagnetic field. Induction bending uses an inductor to locally heat steel through induction. This results in a narrow heat band in the shape to be bent. In general, the reduction of thickness attenuation of a large-diameter steel pipe is not allowed to exceed 12.5%. In this paper, in order to meet the standard of thickness attenuation reduction, a non-uniform heating temperature jump-bending process was investigated. As a result, the developed bending technique meets the requirements of thickness attenuation reduction for large-diameter steel pipes.

Study on the Development and Sintering Process Characteristics of Powder Bed Fusion System (Powder Bed Fusion 시스템의 개발 및 소결 공정 특성에 관한 연구)

  • An, Young Jin;Bae, Sungwoo;Kim, Dong Soo;Kim, Jae Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.773-779
    • /
    • 2015
  • The laser Powder Bed Fusion (PBF) system is currently recognized as a leading process. Due to the various materials employed such as thermoplastic, metal and ceramic composite powder, the application's use extends to machinery, automobiles, and medical devices. The PBF system's surface quality of prototypes and processing time are significantly affected by several parameters such as laser power, laser beam size, heat temperature and laminate thickness. In order to develop a more elaborate and rapid system, this study developed a new PBF system and sintering process. It contains a 3-axis dynamic focusing scanner system that maintains a uniform laser beam size throughout the system unlike the $f{\theta}$ lens. In this study, experiments were performed to evaluate the effects of various laser scanning parameters and fabricating parameters on the fusion process, in addition to fabricating various 3D objects using a PA-12 starting material.

Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA

  • Nouri, Farshid;Ashtari, Payam
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.489-508
    • /
    • 2015
  • In this paper, a novel methodology is proposed to obtain optimum location of outriggers. The method utilizes genetic algorithm (GA) for shape and size optimization of outrigger-braced tall structures. In spite of previous studies (simplified methods), current study is based on exact modeling of the structure in a computer program developed on Matlab in conjunction with OpenSees. In addition to that, exact wind loading distribution is calculated in accordance with ASCE 7-10. This is novel since in previous studies wind loading distributions were assumed to be uniform or triangular. Also, a new penalty coefficient is proposed which is suitable for optimization of tall buildings. Newly proposed penalty coefficient improves the performance of GA and results in a faster convergence. Optimum location and number of outriggers is investigated. Also, contribution of factors like central core and outrigger rigidity is assessed by analyzing several design examples. According to the results of analysis, exact wind load distribution and modeling of all structural elements, yields optimum designs which are in contrast of simplified methods results. For taller frames significant increase of wind pressure changes the optimum location of outriggers obtained by simplified methods. Ratio of optimum location to the height of the structure for minimizing weight and satisfying serviceability constraints is not a fixed value. Ratio highly depends on height of the structure, core and outriggers stiffness and lateral wind loading distribution.