• Title/Summary/Keyword: unified calculation model

Search Result 23, Processing Time 0.024 seconds

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

A Unified Trust Model for Pervasive Environments - Simulation and Analysis

  • Khiabani, Hamed;Idris, Norbik Bashah;Manan, Jamalul-Lail Ab
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1569-1584
    • /
    • 2013
  • Ubiquitous interaction in a pervasive environment is the main attribute of smart spaces. Pervasive systems are weaving themselves in our daily life, making it possible to collect user information invisibly, in an unobtrusive manner by known and even unknown parties. Huge number of interactions between users and pervasive devices necessitate a comprehensive trust model which unifies different trust factors like context, recommendation, and history to calculate the trust level of each party precisely. Trusted computing enables effective solutions to verify the trustworthiness of computing platforms. In this paper, we elaborate Unified Trust Model (UTM) which calculates entity's trustworthiness based on history, recommendation, context and platform integrity measurement, and formally use these factors in trustworthiness calculation. We evaluate UTM behaviour by simulating in different scenario experiments using a Trust and Reputation Models Simulator for Wireless Sensor Networks. We show that UTM offers responsive behaviour and can be used effectively in the low interaction environments.

A unified approach to shear and torsion in reinforced concrete

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.691-703
    • /
    • 2021
  • Reinforced concrete (RC) beams can be subjected to a complex combination of shear forces (V), torsional moments (T), flexural moments (M) and axial loads (N). This paper proposes a unified approach for the analysis of these elements. An existing model for the analysis of orthogonally reinforced concrete membrane elements subjected to in-plane shear and normal stresses is generalized to apply to the case of beams subjected to the complex loading. The combination of V and T can be critical. Torsion is modelled using the hollow-tube analogy. A direct equation for the calculation of the thickness of the equivalent hollow tube is proposed, and the shear stresses caused by V and T are combined using a simple approach. The development and the evaluation of the model are described. The calculations of the model are compared to experimental data from 350 beams subjected to various combinations of stress-resultants and to the calculations of the ACI and the CSA codes. The proposed model provides the most favorable results. It is also shown that it can accurately model the interaction between V and T. The proposed model provides a unified treatment of shear in beams subjected to complex stress-resultants and in thin membrane elements subjected to in-plane stresses.

Determination of shear stiffness for headed-stud shear connectors using energy balance approach

  • Ye, Huawen;Huang, Ruosen;Tang, Shiqing;Zhou, Yu;Liu, Jilin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.477-487
    • /
    • 2022
  • The shear stiffness of headed-stud shear connectors has no unified definition due to the nonlinear characteristics of its load-slip relationship. A unified framework was firstly adopted to develop a general expression of shear load-slip equation for headed-stud shear connectors varying in a large parameter range based on both force and energy balance. The pre- and post-yield shear stiffness were then determined through bilinear idealization of proposed shear load-slip equation. An updated and carefully selected push-out test database of 157 stud shear connectors, conducting on studs 13~30mm in diameter and on concretes 30~180 MPa in cubic compressive strength, was used for model regression and sensitivity analysis of shear stiffness. An empirical calculation model was also established for the stud shear stiffness. Compared with the previous models through statistical analysis, the proposed model demonstrates a better performance to predict the shear load-slip response and stiffness of the stud shear connectors.

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

A Unified 3D Numerical Analysis of a Model Scramjet Engine with a Cavity Flame-Holder and Two Intake Side Walls (공동형 보염기를 갖는 모델 스크램제트 엔진의 흡입구 측면효과를 고려한 3차원 통합 유동해석)

  • Yeom, Hyo-Won;Kim, Sung-Jin;Sung, Hong-Gye;Kang, Sang-Hoon;Yang, Soo-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • To identify the detailed 3D flow characteristics of a model scramjet engine, a unified 3D numerical analysis was performed. The numerical domain of concern includes the entire flow path of the model scramjet engine extending from the intake to the nozzle exhaust. Turbulent models($k-{\omega}$ SST and low Reynolds number k-e with Sarkar model) were applied with comparison of experiment result. Intake side wall's effect on flow characteristics was analyzed in view points of flow quality at inlet duct and near the flame holder as well. The code is paralleled with multi-block feature using MPI(Massage Passing Interface) library to speed up the 3D calculation.

  • PDF

A Unified Analytical Surface Potential Model for SOI MOSFETs (SOI MOSFET의 모든 동작영역을 통합한 해석적 표면전위 모델)

  • 유윤섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • We present a new unified analytical front surface potential model, which can accurately describe the transitions between the partially-depleted (PD) and the fully-depleted (FD) regimes with an analytical expression for the critical voltage V$_{c}$ delineating the PD and the FD region. It is valid in all regions of operation (from the sub -threshold to the strong inversion) and has the shorter calculation time than the iterative procedure approach. A charge sheet model based on the above explicit surface potential formulation is used to derive a single formula for the drain current valid in all regions of operation. Most of the secondary effects can be easily included in the charge sheet model and the model accurately reproduces various numerical and experimental results. No discontinuity in the derivative of the surface potential is found even though three types of smoothing functions are used. More importantly, the newly introduced parameters used in the smoothing functions do not strongly depend on the process parameter.

A Study on Evaluation Method of Stream Naturalness for Ecological Restoration of Stream Corridors (우리나라 중소하천 코리도의 자연성 평가기법 연구)

  • 조용현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.73-81
    • /
    • 1997
  • The main purpose of this study was to develop a new method for evaluation of stream naturalness in order to appraise and prescribe for streams effectively in the process of ecological restoration of stream corridors. The results are as follows : 1) For this purpose six factors were selected on considering the spatial axes of stream corridor variation and total 20 descriptors about the physical structure were selected. 2) The calculation of S.N.I. for each segment was consisted of three steps, such as calculation of S.N.I.s of the individual descriptors, averaging all the descriptors's for each factor, and finally averaging the factors's for the Total S.N.I. 3) The evaluation unit was decided to be 100m size. The score system ranging 1~5 was adopted. Weighting parameters of factors were unified with each other. 4) A GIS model was adopted for classification, calculation, querying, analysing, and presenting S.N.I. information. And the format of S.N.I. maps including statistical graphs and other spatial watershed information was designed for the GIS odel. The naturalness of stream corridor was was investigated by the naturalness of habitat, and assessed by the descriptors focused on physical structure, therefore the S.N.I. can manifest prescriptions for restoration of the stream corridor. On the other hand because some evaluation factors such as water quality, water volume, fauna, flora, functions of stream exosystem has been excluded, S.N.I. could have some limits on representing the full aspects of stream naturalness. This evaluation method is hypothetical one, so it would be investigated through iterative applicatons.

  • PDF

An Observation of Unified Force Expression in The Cylindrical Magnetic Material with a Vertical Current Running Through Its Center (전류가 관통하는 원통형 자성체에 미치는 전자기력식의 통일성에 대한 고찰)

  • Choi, Hong-Soon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.174-179
    • /
    • 2011
  • Magnetic force calculation methods such as Maxwell stress, virtual work principle, equivalent magnetic charge, and equivalent magnetizing current are widely used until now. The force density is still controversial issue even though it is common sense that all of these methods have legitimate results. The surface force densities of each method are quite different with each other in the point of numerical result and final expression. In this paper, it is shown that a unified expression of body force density is derived using virtual air-gap scheme for an analytic model in which cylindrical magnetic material with a vertical current runs through its center.

A novel approach for the definition and detection of structural irregularity in reinforced concrete buildings

  • S.P. Akshara;M. Abdul Akbar;T.M. Madhavan Pillai;Renil Sabhadiya;Rakesh Pasunuti
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.101-126
    • /
    • 2024
  • To avoid irregularities in buildings, design codes worldwide have introduced detailed guidelines for their check and rectification. However, the criteria used to define and identify each of the plan and vertical irregularities are specific and may vary between codes of different countries, thus making their implementation difficult. This short communication paper proposes a novel approach for quantifying different types of structural irregularities using a common parameter named as unified identification factor, which is exclusively defined for the columns based on their axial loads and tributary areas. The calculation of the identification factor is demonstrated through the analysis of rectangular and circular reinforced concrete models using ETABS v18.0.2, which are further modified to generate plan irregular (torsional irregularity, cut-out in floor slab and non-parallel lateral force system) and vertical irregular (mass irregularity, vertical geometric irregularity and floating columns) models. The identification factor is calculated for all the columns of a building and the range within which the value lies is identified. The results indicate that the range will be very wide for an irregular building when compared to that with a regular configuration, thus implying a strong correlation of the identification factor with the structural irregularity. Further, the identification factor is compared for different columns within a floor and between floors for each building model. The findings suggest that the value will be abnormally high or low for a column in the vicinity of an irregularity. The proposed factor could thus be used in the preliminary structural design phase, so as to eliminate the complications that might arise due to the geometry of the structure when subjected to lateral loads. The unified approach could also be incorporated in future revisions of codes, as a replacement for the numerous criteria currently used for classifying different types of irregularities.