• Title/Summary/Keyword: unidirectional deposition field

Search Result 7, Processing Time 0.021 seconds

Anisotropy Effect of Exchange Bias Coupling by Unidirectional Deposition Field of NiFe/FeMn Bilayer (NiFe/FeMn 이중박막의 증착시 자기장에 의한 교환결합력 이방성 효과)

  • Park, Young-Seok;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.180-184
    • /
    • 2008
  • The relation of ferromagnet anisotropic magnetization and the antiferromagnet atomic spin configuration has been investigated for variously angles of unidirectional deposition magnetic field of FeMn layer in Corning glas/Ta(5 nm)/NiFe(7 nm)/FeMn(25 nm)/ Ta(5 nm) multilayer prepared by ion beam deposition. Three unidirectional deposition angles of FeMn layer are $0^{\circ},\;45^{\circ}$, and $90^{\circ}$, respectively. The exchange bias field ($H_{ex}$) obtained from the measuring easy axis MR loop was decreased to 40 Oe in deposition angle of $45^{\circ}$, and to 0 Oe in the angle of $90^{\circ}$. One other side hand, $H_{ex}$ obtained from the measuring hard axis MR loop was increased to 35 Oe in deposition angle of $45^{\circ}$, and to 79 Oe in the angle of $90^{\circ}$. Although the difference of uniderectional axis between ferromagnet NiFe and antiferromagnet FeMn was 90o, the strong antiferromagnetic dipole moment of FeMn caused to rotate the weak ferromagnetic dipole moment of NiFe in the interface. This result implies that one of origins for exchange coupling mechanism depends on the effect of magnetic field angle during deposition of antiferromgnet FeMn layer.

High Exchange Coupling Field and Thermal Stability of Antiferromagnetic Alloy NiMn Spin Valve Films

  • Lee, N. I.;J. H. Yi;Lee, G. Y.;Kim, M. Y.;J. R. Rhee;Lee, S. S.;D. G. Hwang;Park, C. M.
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.50-54
    • /
    • 2000
  • NiMn-pinned spin valve films consisting of a layered glass/NiFe/Co/Cu/Co/NiFe/NiMn/Ta stack were made by do magnetron sputtering. After deposition, the structure was annealed in a series of cycles each including three hours at $220^\circ C, 2\times10^{-6}$ Torr, in a field of 350 Oe, to create an ordered antiferromagnetic structure in the NiMn layer and produce a strong unidirectional pinning field in the pinned magnetic layer, Optimum spin valve properties were obtained after seven annealing cycles, or 21 hours at $220^\circ C$, and were : MR ratio 1%, exchange coupling field 620 Oe, and coercivity of pinned layer 250 Oe. The exchange coupling field remained constant up to an operating temperature of $175^\circ C$, and the blocking temperature was about $380^\circ C$.

  • PDF

A study on the magnetic properties and microstructure of spin-valve type multilayer for giant magnetoresistance (스핀밸브형 거대자기저항 다층박막의 자기적 특성 및 미세구조에 관한 연구)

  • 노재철;이두현;이명신;윤대호;서수정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • The exchange anisotropy is the unidirectional magnetic anisotropy which comes from exchange interaction between antiferromagnetic layer and ferromagnetic layer. The application of this phenomenon to MR read head and spin-valve type GMR (Giant Magnetoresistance) head has been studied extensively. In our study, we intended to apply exchange anisotropy of NiO/NiFe bilayer to spin-valve type GMR element. Above all, we studied the exchange anisotropy of NiO/NiFe bilayer, and focused especially on the effect of NiO deposition condition. And we found that Ar pressure during NiO deposition was crucial factor for the exchange anisotropy of NiO/NiFe bilayer. The lower the Ar pressure is, the better the characteristics of exhange anisotropy is. Then, we applied this optimum condition of NiO/NiFe bilayer to spin-valve type GMR element. Finally we got spin-valve type GMR element which had 3.6 % MR ratio, 16 Oe switching field, and 0.25 %/Oe sensitivity.

  • PDF

Local Variation of Magnetic Parameters of the Free Layer in TMR Junctions

  • Kim, Cheol-Gi;Shoyama, Toshihiro;Tsunoda, Masakiyo;Takahashil, Migaku;Lee, Tae-Hyo;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.72-79
    • /
    • 2002
  • Local M-H loops have been measured on the free layer of a tunneling magnetoresistance (TMR) junction using the magneto-optical Kerr effect (MOKE) system, with an optical beam size of about 2 $\mu$m diameter. Tunnel junctions were deposited using the DC magnetron sputtering method in a chamber with a base pressure of 3$\times$10$^{-9}$ Torr. The relatively irregular variations of coercive force H$_c$(∼17.5 Oe) and unidirectional anisotropy field H$_{ua}$(∼7.5 Oe) in the as-deposited sample are revealed. After $200{^{\circ}C}$ annealing, He decreases to 15 Oe but H$_{ua}$ increases to 20 Oe with smooth local variations. Two-dimensional plots of H$_c$ and H$_{ua}$ show the symmetric saddle shapes with their axes aligned with the pinned layer, irrespective of the annealing field angle. This is thought to be caused by geometric effects during deposition, together with a minor annealing effect. In addition, the variation of root mean square (RMS) surface roughness reveals it to be symmetric with respect to the center of the pinned-layer axis, with the roughness of 2.5 $\AA$ near the edge and 5.8 $\AA$ at the junction center. Comparison of surface roughness with the variation of H$_{ua}$ suggests that the H$_{ua}$ variation of the free layer is well described by dipole interactions related to surface roughness. As a whole, the reversal magnetization is not uniform over the entire junction area and the macroscopic properties are governed by the average sum of local distributions.

The Second Annealing Effect on Giant Magnetoresistance Properties of PtMn Based Spin Valve (이차 열처리가 PtMn계 스핀밸브의 거대자기저항 특성에 미치는 영향)

  • 김광윤;김민정;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.72-77
    • /
    • 2001
  • Top spin valve films with PtMn antiferromagnetic layers were deposited using a multi-target dc magnetron sputtering in (100)Si substrates overcoated with 500 $\AA$ of Al$_2$O$_3$. Firstly, the post-deposition annealing was performed at 270$\^{C}$ in a unidirectional magnetic field of 3 kOe to induce the crystallographic transformation of the PtMn layer from a fcc (111) to a fct (111) structure. Secondly, the spin valve films were annealed without magnetic fields and magnetic properties were measured. In Si/A1$_2$O$_3$ (500$\AA$)/Ta(50$\AA$)NiFe(40$\AA$)/CoFe(17$\AA$)/Cu(28$\AA$)/CoFe (30$\AA$)PtMn(200$\AA$)Ta(50$\AA$) top spin valve samples, the MR ratio decreased slowly with increasing annealing temperature up to 325$\^{C}$. But above 325$\^{C}$, the MR ratio decreased rapidly to 1%, due to a collapse of the exchange coupling between a antiferromagnetic layer and a pinned layer with increasing annealing temperature. Also above 325$\^{C}$, the exchange biased field rapidly decreased and the interlayer coupling field rapidly increased with increasing annealing temperature. A change in the interlayer coupling field was resulted from the increase in interface roughness due to Mn-interdiffusion through the grain boundaries. We confirmed the temperature in changing magnetic properties agreed well with the blocking temperature of PtMn based spin valve structure.

  • PDF

The Effect of Magnetic Field Annealing on the Structual and Electromagnetic Properties of $Ni_{81}Fe_{19}$ thin Films for Magnetoresistaknce Heads (자기저항헤드용 $Ni_{81}Fe_{19}$ 박막의 구조 및 전자기적 특성에 미치는 자장중 열처리의 영향)

  • 김용성;이경섭;서수정;박현순;김기출;송용진
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.242-250
    • /
    • 1996
  • The effects of annealing in magnetic field after deposition on electromagnetic properties of $Ni_{81}Fe_{19}$ thin($400\;{\AA}$) films prepared by RF-magnetron sputtering were investigated in terms of microstructure and surface morphology. The coercivity of the films was decreased below $300^{\circ}C$ due to stress relief and recrystallization, while increased at $400^{\circ}C$ due to grain growth and increasing the surface roughness. And then, $4{\pi}M_{s}$, was almost independent of annealing temperatures. Increasing the annealing temperature. the electrical resistivity of films was decreased from $37\;{\mu}{\Omega}cm$ to $24\;{\mu}{\Omega}cm$, the magnetoresistance was nearly a constant of about $0.6\;{\mu}{\Omega}cm$, and the MR ratio was increased from 1.5 % to 3.1 %. Therefore, It was shown that increasing the magnetoresistive ratio was mainly affected by decreasing the electrical resistivity. Considering the practical application of the films for magnetoresistive heads, optimal annealing conditions was obtained after one hour annealing at $300^{\circ}C$ in 400 Oe unidirectional magnetic field.

  • PDF