• 제목/요약/키워드: unicyclic graphs

검색결과 5건 처리시간 0.019초

The Spectral Radii of Graphs with Prescribed Degree Sequence

  • Li, Jianxi;Shiu, Wai Chee
    • Kyungpook Mathematical Journal
    • /
    • 제54권3호
    • /
    • pp.425-441
    • /
    • 2014
  • In this paper, we first present the properties of the graph which maximize the spectral radius among all graphs with prescribed degree sequence. Using these results, we provide a somewhat simpler method to determine the unicyclic graph with maximum spectral radius among all unicyclic graphs with a given degree sequence. Moreover, we determine the bicyclic graph which has maximum spectral radius among all bicyclic graphs with a given degree sequence.

THE MULTIPLICATIVE VERSION OF WIENER INDEX

  • Hua, Hongbo;Ashrafi, Ali Reza
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.533-544
    • /
    • 2013
  • The multiplicative version of Wiener index (${\pi}$-index), proposed by Gutman et al. in 2000, is equal to the product of the distances between all pairs of vertices of a (molecular) graph G. In this paper, we first present some sharp bounds in terms of the order and other graph parameters including the diameter, degree sequence, Zagreb indices, Zagreb coindices, eccentric connectivity index and Merrifield-Simmons index for ${\pi}$-index of general connected graphs and trees, as well as a Nordhaus-Gaddum-type bound for ${\pi}$-index of connected triangle-free graphs. Then we study the behavior of ${\pi}$-index upon the case when removing a vertex or an edge from the underlying graph. Finally, we investigate the extremal properties of ${\pi}$-index within the set of trees and unicyclic graphs.

ON GRAPHS WITH EQUAL CHROMATIC TRANSVERSAL DOMINATION AND CONNECTED DOMINATION NUMBERS

  • Ayyaswamy, Singaraj Kulandaiswamy;Natarajan, Chidambaram;Venkatakrishnan, Yanamandram Balasubramanian
    • 대한수학회논문집
    • /
    • 제27권4호
    • /
    • pp.843-849
    • /
    • 2012
  • Let G = (V, E) be a graph with chromatic number ${\chi}(G)$. dominating set D of G is called a chromatic transversal dominating set (ctd-set) if D intersects every color class of every ${\chi}$-partition of G. The minimum cardinality of a ctd-set of G is called the chromatic transversal domination number of G and is denoted by ${\gamma}_{ct}$(G). In this paper we characterize the class of trees, unicyclic graphs and cubic graphs for which the chromatic transversal domination number is equal to the connected domination number.

ON KRAMER-MESNER MATRIX PARTITIONING CONJECTURE

  • Rho, Yoo-Mi
    • 대한수학회지
    • /
    • 제42권4호
    • /
    • pp.871-881
    • /
    • 2005
  • In 1977, Ganter and Teirlinck proved that any $2t\;\times\;2t$ matrix with 2t nonzero elements can be partitioned into four sub-matrices of order t of which at most two contain nonzero elements. In 1978, Kramer and Mesner conjectured that any $mt{\times}nt$ matrix with kt nonzero elements can be partitioned into mn submatrices of order t of which at most k contain nonzero elements. In 1995, Brualdi et al. showed that this conjecture is true if $m = 2,\;k\;\leq\;3\;or\;k\geq\;mn-2$. They also found a counterexample of this conjecture when m = 4, n = 4, k = 6 and t = 2. When t = 2, we show that this conjecture is true if $k{\leq}5$.