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Abstract. In this paper, we first present the properties of the graph which maximize

the spectral radius among all graphs with prescribed degree sequence. Using these results,

we provide a somewhat simpler method to determine the unicyclic graph with maximum

spectral radius among all unicyclic graphs with a given degree sequence. Moreover, we

determine the bicyclic graph which has maximum spectral radius among all bicyclic graphs

with a given degree sequence.

1. Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). Its
order is |V (G)|, denoted by n, and its size is |E(G)|, denoted bym. For v ∈ V (G), let
NG(v) (or N(v) for short) be the set of all neighbors of v in G and let d(v) = |N(v)|
be the degree of v. We use G − e and G + e to denote the graphs obtained by
deleting the edge e from G and by adding the edge e to G, respectively. For any
nonempty subset W of V (G), the subgraph of G induced by W is denoted by G[W ].
The distance of u and v (in G) is the length of the shortest path between u and
v, denoted by d(u, v). For all other notions and definitions, not given here, see, for
example, [1], or [4] (for graph spectra). For the basic notions and terminology on
the spectral graph theory the readers are referred to [4].

Let A(G) be the adjacency matrix ofG. Its eigenvalues are called the eigenvalues
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(or the spectrum) of G. They are real because A(G) is symmetric. The eigenvalues
of A(G) are usually denoted by λ1 ≥ λ2 ≥ · · · ≥ λn. The largest eigenvalue λ1 is
also called the spectral radius of G, denoted by ρ. The following description of the
spectral radius ρ of G, is well known (see, for example, [5, p.49]):

(1.1) ρ = sup
∥x∥=1

xTA(G)x (x ∈ Rn)

We note here that the maximum is attained in (1.1) if and only if x is an eigenvector
(for the largest eigenvalue) of A(G). When G is connected, then A(G) is irreducible
and by the Perron-Frobenius Theorem (see e.g. [9]) the spectral radius ρ of G is
simple and there is a unique positive unit eigenvector x = (xv, v ∈ V (G)), where
xv is also called the ρ-weight of the vertex v (with respect to x). We refer to such an
eigenvector as the Perron vector of G. Then we have the following set of equations,
known in general as eigenvalue equations:

(1.2) ρxv =
∑

u∈N(v)

xu for v ∈ V (G).

A nonincreasing sequence π = (d0, d1, . . . , dn−1) of nonnegative integers is called
a degree sequence (or graphic) if there exists a graph G of order n for which
d0, d1, . . . , dn−1 are the degrees of its vertices.

Given a degree sequence π = (d0, d1, . . . , dn−1), let G
π
n be the set of all connected

graphs of order n with this degree sequence. For any G ∈ Gπ
n, we have

∑n−1
i=0 di =

2m, and k = m− n+ 1 is the number of independent cycles. Usually, such a graph
G can be referred to as a k-cyclic graph (for example, a tree is a connected acyclic
graph (so k = 0), a unicyclic graph is a connected graph containing exactly one cycle
(so k = 1) and a bicyclic graph is a connected graph containing two independent
cycles (so k = 2)). For any k-cyclic graph G, the Perron-core of G is the set of
vertices {v0, v1, . . . , vt−1} (t ≤ n) having the largest degree such that the graph
constructed on such vertices is a k-cyclic graph. The remaining vertices of G form
the Perron-periphery. Clearly the number of elements in the Perron-core depends
on k, the number of independent cycles. So the vertices in the Perron-periphery lie
on some hanging trees attached to the vertices of the Perron-core.

The Brualdi-Solheid problem (BSP for short) put forward the determination
of graphs maximizing the spectral radius in a given set S of graphs. The BSP for
S = Gπ

n has not been solved in general. The BSP for Gπ
n if restricted on trees has

been solved in [2]. Recently, Belardo et al. [3] solved the BSP for Gπ
n if restricted

on unicyclic graphs, and make the following general conjecture.

Conjecture 1.1. Let Gπ
max be the graph which has maximum spectral radius

among all graphs in Gπ
n. Then Gπ

max is the unique graph consisting of a k-cyclic
Perron-core and the vertices of the Perron-periphery are inserted in spiral like dis-
position (for a formal definition of spiral like disposition see [2]) with respect to the
Perron-core.
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The rest of this paper is organized as follows. In section 2, we present some
useful lemmas. In section 3, we first introduce some properties of the graphs which
maximize the spectral radii among all graphs in Gπ

n. Then using these results, we
give a somewhat simpler method to determine the unicyclic graph which has max-
imum spectral radius among all unicyclic graphs with prescribed degree sequence.
Moreover, we determine the bicyclic graph which has maximum spectral radius
among all bicyclic graphs with prescribed degree sequence, which confirms Conjec-
ture 1.1 with k = 2.

2. Preliminaries

Generally, it is natural to expect that ρ changes when G is perturbed, and we
can ask whether ρ increases or decreases in such situations. The following two re-
sults are the part of standard folklore of graph perturbations. Their proofs appear
in several literatures (see, for example, [5]). The first one is about the perturbation
known as the (simultaneous) rotations (see Lemma 2.1), the second one is about
the local switching (see Lemma 2.2). Recall that the local switching preserve the
degree sequence and they play the crucial role in the next section.

Lemma 2.1.([5]) Let u and v be two vertices of a connected graph G (of order n)
and let N(u)\N(v) = {v1, v2, . . . , vs} (s ≥ 1). Let G′ be the graph obtained from
G by deleting the edges uvi(1 ≤ i ≤ s), and then adding the edges vvi (1 ≤ i ≤ s).
If xv ≥ xu, then ρ(G′) > ρ(G).

Lemma 2.2.([5]) Let G (of order n) be a connected graph with u1v1, u2v2 ∈ E(G)
and u1u2, v1v2 /∈ E(G). Let G′ be the graph obtained from G by the local switching,
that consists of the deletion of edges u1v1 and u2v2, followed by the addition of edges
u1u2 and v1v2 (see Fig. 1). If (xu1 − xv2)(xu2 − xv1) ≥ 0, then ρ(G′) ≥ ρ(G), and
the equality holds if and only if xu1 = xv2 and xu2 = xv1 .

To state the next result (due to Hoffman and Smith), we need more definitions.
An internal path in a graph, denoted by v1v2 · · · vr is a path joining vertices v1 and
vr which are both of degree greater than two (not necessarily distinct), while all
other vertices (i.e., v2, . . . , vr−1) are of degree equal to 2. We denote by Cn and Wn

the cycle and the double-snake (the tree of order n having two vertices of degree
three which are at distance n− 5).

Lemma 2.3.([8]) Let G′ be the graph obtained from a graph G, which is neither
Cn nor Wn, by inserting a vertex of degree two in an edge e. Then we have

(1) if e does not lie on an internal path, then ρ(G′) > ρ(G);

(2) if e lie on an internal path, then ρ(G′) < ρ(G).

If G = Cn (resp. Wn) and G′ = Cn+1 (resp. Wn+1), then ρ(G′) = ρ(G) = 2.

Lemma 2.4.([8]) Let G(k, l) be a graph obtained from a connected graph G by
adding at a fixed vertex v two hanging paths whose lengths are k and l (k ≥ l ≥ 1).
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Then
ρ(G(k, l)) > ρ(G(k + 1, l − 1)).

3. Graphs with Maximum Spectral Radii

We introduce an ordering of the vertices v0, v1, . . . , vn−1 of a graph G ∈ Gπ
n by means

of breadth-first-search. Select a vertex v0 ∈ V (G) and start with vertex v0 in layer
0 as root; all neighbors of v0 belong to layer 1. Now we continue by recursion to
construct all other layers, i.e., all neighbors of vertices in layer i, which are not in
layers i or i− 1, build up layer i+ 1. Note that all vertices in layer i have distance
i from root v0. We call this distance the height h(v) = d(v, v0) of a vertex v.

Note that one can draw these layers on circles, respectively. Thus such an
ordering is also called spiral like ordering.

For the description of graphs which have maximum spectral radii, we need the
following notion.

Definition 3.1. Let G = (V, E) be a graph with root v0. An ordering ≺ of
the vertices is called a breadth-first-search ordering (BFS-ordering for short) if the
following hold for all vertices vi, vj ∈ V (i ̸= j):

(1) vi ≺ vj implies h(vi) ≤ h(vj)

(2) vi ≺ vj implies d(vi) ≥ d(vj)

(3) Let vivj ∈ E, vlvk ∈ E, vivk /∈ E, vjvl /∈ E with h(vi) = h(vl) = h(vj)− 1 =
h(vk)− 1. If vi ≺ vl, then vj ≺ vk.

We call a connected graph which has a BFS-ordering for its vertices a BFS-
graph.

Let Gπ
max be the graph which has maximum spectral radius among all graphs

in Gπ
n. Let x = (xv0 , xv1 , . . . , xvn−1) (xv0 ≥ xv1 ≥ · · · ≥ xvn−1) be the Perron vector

of Gπ
max.
The following result due to Biyukoğlu and Leydold [2], which provide a struc-

tural characterization for Gπ
max.

Lemma 3.2.([2]) There exists an ordering ≺ of V (Gπ
max) which is consistent with

its Perron vector x in such a way that xvi ≥ xvj implies that vi ≺ vj . Moreover,
such an ordering ≺ of V (Gπ

max) satisfies the conditions (1) and (2) in Definition 3.1.

In fact the ordering ≺ of V (Gπ
max) in Lemma 3.2 also satisfies the condition (3)

in Definition 3.1. Otherwise, by Lemma 3.2, there exists an ordering ≺ of V (Gπ
max)

such that v0 ≺ v1 ≺ · · · ≺ vn−1 (i.e., xv0 ≥ xv1 ≥ · · · ≥ xvn−1) implies that
h(v0) ≤ h(v1) ≤ · · · ≤ h(vn−1) and d(v0) ≥ d(v1) ≥ · · · ≥ d(vn−1). Furthermore, if
vivj ∈ E, vlvk ∈ E, vivk /∈ E, vjvl /∈ E with h(vi) = h(vl) = h(vj)− 1 = h(vk)− 1.
Suppose that vi ≺ vl and vj ≻ vk, i.e., xvi ≥ xvl and xvj < xvk

. Let

G′ = Gπ
max − {vivj , vlvk}+ {vivk, vlvj}.
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Clearly, G′ ∈ Gπ
n. Hence, Lemma 2.2 implies that ρ(Gπ

max) < ρ(G′). This is a
contradiction.

Hence, we summary the above result as follows.

Theorem 3.3. Gπ
max is a BFS-graph. Moreover, Gπ

max has a BFS-ordering of its
vertices v0 ≺ v1 ≺ · · · ≺ vn−1, which consists with the Perron vector x in such a
way that xv0 ≥ xv1 ≥ · · · ≥ xvn−1 .

Let x = (xv0 , xv1 , . . . , xvn−1) (xv0 ≥ xv1 ≥ · · · ≥ xvn−1) be the Perron vector
of Gπ

max. In fact, Theorem implies that there exists a well-ordering V (Gπ
max) =

{v0, v1, . . . , vn−1} of Gπ
max with root v0 such that

v0 ≺ v1 ≺ · · · ≺ vn−1 (i.e., xv0 ≥ xv1 ≥ · · · ≥ xvn−1)

implies that

h(v0) ≤ h(v1) ≤ · · · ≤ h(vn−1) and d(v0) ≥ d(v1) ≥ · · · ≥ d(vn−1).

Let Vi = {v ∈ V (Gπ
max), h(v) = i} for i = 0, 1, . . . , h(vn−1) = p. Hence we may

relabel the vertices of Gπ
max in such a way that Vi = {vi,1, . . . , vi,si} with xvi,1 ≥

xvi,2 ≥ · · · ≥ xvi,si
and xvi,j ≥ xvi+1,k

for i = 0, 1, . . . , p − 1 and 1 ≤ j ≤ si,
1 ≤ k ≤ si+1 (Following, if a graph is a BFS-graph, we may keep this labeling and
notation). Clearly, V (Gπ

max) = V1 ∪ V2 ∪ · · · ∪ Vp, |V1| = s1 = d0 and |Vi| = si for
2 ≤ i ≤ p. Following, we give an example to explain this concept.

Example 3.4. In Figure 2 the unique graph maximizing the spectral radius among
all uncyclic graphs with degree sequence (5(1), 4(2), 3(1), 2(2), 1(8)) is depicted. The
exponent in the degree sequence denote the number of vertices in the graph having
such a degree. On the left there is a original graph, and on the right there is its
relabeled graph.

First, we show the following result.

Lemma 3.5. If Gπ
max is not a regular graph, then xv0,1 > xv1,s1

and xv1,1 >
min

v2,i∈N(v1,1)
{xv2,i}.

Proof. Recall that for any graph G with maximum degree ∆, we have ρ(G) ≤ ∆, and
the equality holds if and only of G is regular (see [4]). Thus d0 = d(v0,1) > ρ(Gπ

max),
since Gπ

max is not a regular graph. Hence, from (1.2), we have

d0xv0,1 > ρ(Gπ
max)xv0,1 =

s1∑
i=1

xv1,i ≥ d0xv1,s1
.

Therefore, xv0,1 > xv1,s1
.

Let xv2,t = min
v2,i∈N(v1,1)

{xv2,i}. Suppose that xv1,1 = xv2,t . Then xv1,1 = · · · =

xv1,s1
= xv2,t . From (1.2), we have
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(3.1) ρ(Gπ
max)xv0,1 =

s1∑
i=1

xv1,i = d(v0,1)xv1,1

and
(3.2)
ρ(Gπ

max)xv1,1 = xv0,1 + (d(v1,1)− 1)xv1,1 , i.e., (ρ(Gπ
max)− d(v1,1) + 1)xv1,1 = xv0,1 .

Combining (3.1) and (3.2), we have

(3.3) ρ(Gπ
max)(ρ(G

π
max)− d(v1,1) + 1) = d(v0,1).

On the other hand, we have

ρ(Gπ
max)xv2,t =

∑
uv2,t∈E(Gπ

max)

xu ≤ d(v2,t)xv1,1 , i.e., ρ(Gπ
max) ≤ d(v2,t) ≤ d(v1,1).

Note that G is non-regular, hence ρ(Gπ
max) < d(v0,1) = d0. Then in view of (3.3),

we have d(v0,1) ≤ ρ(Gπ
max) < d(v0,1), a contradiction. 2

We define a partial ordering on degree sequences as follows: for two degree
sequences π = (d0, d1, . . . , dn−1) π

′ = (d′0, d
′
1, . . . , d

′
n−1), we write π� π′ if and only

if
∑n−1

i=0 di =
∑n−1

i=0 d′i and
∑k

i=0 di ≤
∑k

i=0 d
′
i for all k = 0, . . . , n − 1. Recall

that the degree sequences are non-increasing. Such an ordering is also called a
majorization. Biyukoğlu and Leydold [2] proved that

Lemma 3.6.([2]) Let π and π′ be two distinct degree sequences with π � π′. Let
Gπ

max and Gπ′

max be two graphs with maximum spectral radii among all graphs in
the sets Gπ

n and Gπ′

n , respectively. Then ρ(Gπ
max) < ρ(Gπ′

max).

Belardo et al. [3] characterize the unicyclic graph with maximum spectral radius
among all unicyclic graphs with prescribed degree sequence. Using above results,
following, we will provide a somewhat simpler method to determine the unicyclic
graph which has maximum spectral radius among all unicyclic graphs with pre-
scribed degree sequence. Moreover, we also determine the bicyclic graph which has
maximum spectral radius among all bicyclic graphs with prescribed degree sequence.
It confirms Conjecture 1.1 with k = 2.

3.1. Unicyclic graphs

Given a non-increasing sequence π = (d0, d1, . . . , dn−1) with
∑n−1

i=0 di = 2n,
if there exists a unicyclic graph having π as its degree sequence, then π is called
unicyclic graphic. Let Uπ

n be the set of all unicyclic graphs of order n with degree
sequence π. Let π = (d0, d1, . . . , dn−1) be unicyclic graphic with n ≥ 3. We
construct a special unicyclic graph U∗

π as follows: If d0 = 2, then let U∗
π = Cn. If

d0 ≥ 3 and d1 = 2, then let U∗
π be the unicyclic graph obtained by attaching d0 − 2
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paths of almost equal lengths to one vertex of C3. If d1 ≥ 3, then let d(vi) = di
for 0 ≤ i ≤ n− 1. Then let U∗

π be the unicyclic graph consisting of C3 = v0v1v2v0
and the remaining vertices (i.e., v3, . . . , vn−1) appear in spiral like disposition with
respect to C3 starting from v3 that is adjacent to v0.

Lemma 3.7. Let π = (d0, d1, . . . , dn−1) be unicyclic graphic with d1 = 2. Then
U∗
π is the only unicyclic graph with maximum spectral radius among all graphs in

Uπ
n.

Proof. Let G be a unicyclic graph with maximum spectral radius among all unicyclic
graphs with degree sequence π = (d0, d1, . . . , dn−1). If d0 = 2, then G must be the
cycle Cn and the assertion holds. Now assume that d0 ≥ 3. Since d1 = 2, G
must be the graph obtained from a cycle Ck and d0 − 2 paths Pni by identifying
one vertex of Ck and one end vertex of each Pni for i = 1, 2, . . . , d0 − 2. Clearly,

n = k +
∑d0−2

i=1 ni. Lemma 2.3 implies that k = 3. Otherwise, we may contract an
edge of Ck (which decreases the cycle length), and subdivide an edge of one path
Pni . Clearly, the resulting graph G′ ∈ Uπ

n. By Lemma 2.3, we have ρ(G) < ρ(G′).
This is a contradiction. Moreover, Lemma 2.4 implies that |ni − nj | ≤ 1 for all
1 ≤ i, j ≤ d0 − 2. Therefore, G ∼= U∗

π . 2

Lemma 3.8. Let π = (d0, d1, . . . , dn−1) be unicyclic graphic with d1 ≥ 3. Then
U∗
π is the only unicyclic graph with maximum spectral radius among all graphs in

Uπ
n.

Proof. Let G be a unicyclic graph with maximum spectral radius among all graphs
in Uπ

n. Then Theorem 3.3 implies thatGmust be a BFS-graph. We keep the labeling
of its vertices as defined below Theorem 3.3. It suffices to show that v1,1v1,2 ∈ E(G).

Since G is a unicyclic graph, there exists only one cycle C in G. Let vr,q be the
smallest height among vertices in V (C), i.e., h(vr,q) = r ≤ h(u) for every u ∈ V (C).

Suppose that v1,1v1,2 /∈ E(G). Now we consider the following three cases:

Case 1. vr,q = v0,1.

Since G is a unicyclic graph, |E(G[V1])| ≤ 1.

(i) |E(G[V1])| = 1.

Suppose that v1,1v1,i ∈ E(G) (i ≥ 3). Since G is a unicyclic graph and d(v1,2) ≥
d(v1,i) ≥ 2, there exists a vertex v2,t ∈ V2 such that v1,2v2,t ∈ E(G) but v1,iv2,t /∈
E(C). Let

G′ = G− {v1,1v1,i, v1,2v2,t}+ {v1,1v1,2, v1,iv2,t}.

Then G′ ∈ Uπ
n. Moreover, Lemma 3.5 implies that xv1,1 > min

v2,i∈N(v1,1)
{xv2,i} ≥ xv2,t .

And xv1,2 ≥ xv1,i . Therefore, by Lemma 2.2 we have ρ(G) < ρ(G′). This is a
contradiction.

Suppose that v1,iv1,j ∈ E(G) (j > i ≥ 2). Since G is a unicyclic graph and
d(v1,1) = d1 ≥ 3, there exists a vertex v2,t ∈ V2 such that v1,1v2,t ∈ E(G) and
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xv2,t = min
v2,i∈N(v1,1)

{xv2,i}. Clearly, v1,1v1,i /∈ E(G) and v1,jv2,t /∈ E(G). Let

G′ = G− {v1,1v2,t, v1,iv1,j}+ {v1,1v1,i, v1,jv2,t}.

Then G′ ∈ Uπ
n. Moreover, we claim that xv1,1 > xv1,j or xv1,i > xv2,t (otherwise,

xv1,1
= xv1,j

= xv1,i
= xv2,t

, by Lemma 3.5, it is impossible). Therefore, Lemma
2.2 implies that ρ(G) < ρ(G′). This is a contradiction too.

(ii) |E(G[V1])| = 0.

In this case, there exist two vertices v1,i ∈ V1 (i ≥ 2) and v2,j ∈ V2 such that
v1,iv2,j ∈ E(C). Since G is a unicyclic graph and d(v1,1) = d1 ≥ 3, there exists a
vertex v2,t ∈ V2 such that v1,1v2,t ∈ E(G) but v1,1v2,t /∈ E(C). Clearly, v1,iv2,t /∈
E(G). Let

G′ = G− {v1,1v2,t, v1,iv2,j}+ {v1,1v1,i, v2,tv2,j}.

Then G′ ∈ Uπ
n. Moreover, by Lemma 3.5, we have xv1,1 > min

v2,i∈N(v1,1)
{xv2,i} ≥ xv2,j .

Recall that xv1,i ≥ xv2,t . Therefore, Lemma 2.2 implies that ρ(G) < ρ(G′). This is
a contradiction.

Case 2. vr,q = v1,1.

There exists a vertex v2,t ∈ V2 such that v1,1v2,t ∈ E(C). Since G is a unicyclic
graph and d(v1,2) ≥ d(v2,t) ≥ 2, there exists a vertex v2,j ∈ V2 such that v1,2v2,j ∈
E(G) but v1,2v2,j /∈ E(C). Clearly, v2,tv2,j /∈ E(G). Let

G′ = G− {v1,1v2,t, v1,2v2,j}+ {v1,1v1,2, v2,tv2,j}.

Then G′ ∈ Uπ
n. Similarly, we have xv1,1 > xv2,j and xv1,2 ≥ xv2,t . Hence, Lemma

2.2 implies that ρ(G) < ρ(G′). This is a contradiction.

Case 3. vr,q ̸= v0,1, v1,1.

There exists vr+1,t ∈ Vr+1 such that vr,qvr+1,t ∈ E(C). Since G is a unicyclic
graph, from the choice of vr,q, it is clear that there is no edges in G[Vi] for 0 ≤ i ≤ r.
Hence |Vr| ≥ d0 ≥ 3. Since d(vr+1,t) ≥ 2, there must exist two vertices vr,i ∈ Vr

and vr+1,j ∈ Vr+1 such that vr,ivr+1,j ∈ E(G) but vr,ivr+1,j /∈ E(C). Let

G∗ = G− {vr,qvr+1,t, vr,ivr+1,j}+ {vr,ivr,q, vr+1,jvr+1,t}.

Then G∗ ∈ Uπ
n. Since xvr,q ≥ xvr+1,j and xvr,i ≥ xvr+1,t , Lemma 2.2 implies that

ρ(G) ≤ ρ(G∗). Clearly, the smallest height of the cycle in G∗ is less than r. By
repeating the argument of Case 3 or Cases 1 and 2, it is easy to see that G is not
a unicyclic graph with maximum spectral radius among all graphs in Uπ

n. This is a
contradiction.

From the above discussions, the proof is completed. 2

Combining Lemmas 3.7 and 3.8, we have the following result.
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Theorem 3.9. Let π = (d0, d1, . . . , dn−1) be unicyclic graphic. Then U∗
π is the

only unicyclic graph having maximum spectral radius among all graphs in Uπ
n.

Let Un be the set of all unicyclic graphs of order n, Un,k be the set of all unicyclic
graphs of order n with k pendent vertices and Uπ

n,k be the set of all unicyclic graphs
of order n with k pendent vertices and degree sequence π = (d0, d1, . . . , dn−1). Thus
dn−k−1 > 1 and dn−k = · · · = dn−1 = 1. Let U∗

π′ be the unicyclic graph with maxi-

mum spectral radius among all graphs in Uπ′

n,k, where π
′ = (k+2, 2, . . . , 2︸ ︷︷ ︸

n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k

).

By Lemma 3.7. it is obvious that U∗
π′ is the unicyclic graph obtained from a triangle

and k paths of almost equal lengths by identifying one vertex of the triangle and
one end of each path of the k paths. It is easy to see that π � π′ for each π, where
π is the degree sequence of unicyclic graph of order n with k pendent vertices. So
that by Lemma 3.6, the following result is obvious.

Theorem 3.10.([6]) Let G ∈ Un,k. Then ρ(G) ≤ ρ(U∗
π′), and the equality holds if

and only if G ∼= U∗
π′ , where π′ = (k + 2, 2, . . . , 2︸ ︷︷ ︸

n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k

).

Since U∗ is the only unicyclic graph with degree sequence π∗ = (n −
1, 2, 2, 1, . . . , 1) and for each unicyclic graphic degree sequence π, we have π � π∗.
So that Lemma 3.6 implies that

Theorem 3.11.([6]) Let G ∈ Un. Then ρ(G) ≤ ρ(U∗), and the equality holds if
and only if G ∼= U∗.

3.2. Bicyclic graphs

To state the main results in this subsection, we need to define the following two
kinds of bicyclic graphs.

Let B(l, s, k) be the bicyclic graph obtained from two cycles Cl and Ck, by
joining a path of length s−1 between them, where l ≥ k ≥ 3 and s ≥ 1 (see Fig. 4).

Let P (p, l, q) (1 ≤ l ≤ min{p, q}) be the bicyclic graph obtained from the cycle
Cp+q: v1v2 · · · vpvp+1 · · · vp+qv1 by connecting vertices v1 and vp+1 with a new path
v1u1 · · ·ul−1vp+1 of length l (see Fig. 4).

Similarly, for a given non-increasing sequence π = (d0, d1, . . . , dn−1) with∑n−1
i=1 di = 2(n+1), if there exists a bicyclic graph having π as its degree sequence,

then π is called bicyclic graphic. Let π = (d0, d1, . . . , dn−1) be bicyclic graphic with
n ≥ 4. We construct a special bicyclic graph B∗

π as follows: If d0 = 4 and d1 = 2,
then let B∗

π = B(n − 2, 1, 3). If d0 ≥ 5 and d1 = 2, then let B∗
π be the bicyclic

graph obtained from B(3, 1, 3) by attaching d0 − 4 paths of almost equal lengths
to the vertex of degree 4. If d0 = d1 = 3 and d2 = 2, then let B∗

π = P (n − 2, 1, 2)
(or P (2, 1, n − 2)). If d0 = d1 = d2 = 3, then let d(vi) = di for 0 ≤ i ≤ n − 1.
Then let B∗

π be the bicyclic graph consisting of P (2, 1, 2) (shown in Fig. 5.) and
the remaining vertices (i.e., v4, . . . , vn−1) appear in spiral like disposition with re-
spect to P (2, 1, 2) starting from v4 that is adjacent to v2. If d0 ≥ 4 and d1 ≥ 3,
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let d(vi) = di for 0 ≤ i ≤ n − 1. Then let B∗
π be the bicyclic graph consisting of

P (2, 1, 2) (shown in Fig. 5.) and the remaining vertices (i.e., v4, . . . , vn−1) appear
in spiral like disposition with respect to P (2, 1, 2) starting from v4 that is adjacent
to v0.
Lemma 3.12. Let π = (d0, d1, . . . , dn−1) be bicyclic graphic with d1 = 2. Then
B∗

π is the only bicyclic graph with maximum spectral radius among all graphs in
Bπ

n.

Proof. Let G be a bicyclic graph with maximum spectral radius among all graphs
in Bπ

n. Theorem 3.3 implies that G is a BFS-graph. Suppose that d0 ≥ 5. Similar
to the proof of Lemma 3.7, the assertion holds. Now assume that d0 = 4. Then G
must be B(l, 1, k) (l + k = n + 1). It suffices to prove that k = 3. Moreover, since
G is a BFS-graph, keeping the labeling as mentioned above, we only need to show
that |E(G[V1])| ≥ 1. Otherwise, there exists v2,t ∈ V2 such that v1,1v2,t ∈ E(G),
and there exists an edge v1,iv2,j (2 ≤ i ≤ 4) such that v1,iv2,j and v1,1v2,t lie on the
different cycles since d(v0,1) = d0 = 4. Now, let

G′ = G− {v1,1v2,t, v1,iv2,j}+ {v1,1v1,i, v2,tv2,j}.

Then G′ ∈ Bπ
n. From Lemma 3.5, we know that xv1,1 > xv2,t ≥ x2,j and xv1,i ≥

xv2,t . Therefore, Lemma 2.2 implies that ρ(G) < ρ(G′). This is a contradiction. 2

To deal with the case d1 ≥ 3, we need consider the following two subcases:

Subcase A: d0 = 3. Since d0 ≥ d1 ≥ · · · ≥ dn−1, d0 = d1 = 3 and di ≤ 3
(3 ≤ i ≤ n− 1).

Subcase B: d0 ≥ 4.

Such two cases will be solved in Lemmas 3.13 and 3.14, respectively.

Lemma 3.13. Let π = (d0, d1, . . . , dn−1) be bicyclic graphic with d0 = d1 = 3.
Then B∗

π is the only bicyclic graph with maximum spectral radius among all graphs
in Bπ

n.

Proof. Let G be a bicyclic graph with maximum spectral radius among all graphs
in Bπ

n. Theorem 3.3 implies that G is a BFS-graph.
Suppose that d2 = 2. Then G must be either B(l, 2, k) or P (p, 1, q). If G ∼=

B(l, 2, k), then let

G′ = G− {v1,1v2,1, v1,2v2,3}+ {v1,1v1,2, v2,1v2,3}.

Clearly, G′ ∈ Bπ
n and ρ(G) < ρ(G′). Thus, G ∼= P (p, 1, q). Similarly, we can show

that p = n− 2 or q = n− 2. So that the assertion holds.
Suppose that d2 = 3. By using the same argument as the proof of Theorem

3.14 below, the assertion holds. 2

Theprem 3.14. Let π = (d0, d1, . . . , dn−1) be bicyclic graphic with d0 ≥ 4 and
d1 ≥ 3. Then B∗

π is the only bicyclic graph with maximum spectral radius among
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all graphs in Bπ
n.

Proof. Let G be a bicyclic graph with maximum spectral radius among all graphs
in Bπ

n. Then Theorem 3.3 implies that G is a BFS-graph. Keeping the label-
ing of its vertices and notations as mentioned above, we only need to show that
v1,1v1,2, v1,1v1,3 ∈ E(G).

Since G is a bicyclic graph, there exist two independent cycles, say C1 and
C2, in G. Let vr,q be the smallest height among vertices in V (C1) or V (C2), i.e.,
h(vr,q) = r ≤ h(u) for any u ∈ V (C1 ∪ C2) (if there exist vr,q1 ∈ V (C1) and
vr,q2 ∈ V (C2), then q = min{q1, q2}). Now we consider the following three cases:

Case 1. vr,q = v0,1.

First, we claim that |E(G[V1])| ≥ 1.

Suppose not, i.e., |E(G[V1])| = 0. Since v0,1 ∈ V (C1 ∪ C2), there exist v1,i ∈ V1

(i ≥ 2) and v2,j ∈ V2 such that v1,iv2,j ∈ E(C1 ∪ C2).
Suppose that there exists v2,t ∈ V2 such that v1,1v2,t ∈ E(G) but v1,1v2,t /∈

E(C1 ∪ C2). Let

G′ = G− {v1,1v2,t, v1,iv2,j}+ {v1,1v1,i, v2,tv2,j}.

Then G′ ∈ Bπ
n. Moreover, recall that xv1,1 > xv2,j and xv1,i ≥ xv2,t . Lemma 2.2

implies that ρ(G) < ρ(G′). This is a contradiction.
Suppose that for each v2,k ∈ N(v1,1), v1,1v2,k ∈ E(C1 ∪ C2). Since d(v1,1) =

d1 ≥ 3 and G is a bicyclic graph, there exist at least one edge v1,1v2,t (v2,t ∈ N(v1,1))
such that v1,1v2,t and v1,iv2,j are in the different independent cycles. Let

G′ = G− {v1,1v2,t, v1,iv2,j}+ {v1,1v1,i, v2,tv2,j}.

Similarly, we have G′ ∈ Bπ
n and ρ(G) < ρ(G′). This is a contradiction too.

On the other hand, since G is a bicyclic graph, |E(G[V1])| ≤ 2. Therefore, we
only need to consider the following two subcases:

(a) |E(G[V1])| = 2. It suffices to prove that v1,1v1,2, v1,1v1,3 ∈ E(G).

Suppose that v1,iv1,j , v1,lv1,k ∈ E(G) (j > i ≥ 2, k > l ≥ 2). Since d(v1,1) = d1 ≥
3, there exists v2,t ∈ V2 such that xv2,t = min

v2,i∈N(v1,1)
{xv2,i} and v1,1v2,t ∈ E(G).

Let

G′ = G− {v1,1v2,t, v1,iv1,j}+ {v1,1v1,i, v1,jv2,t}.

Similarly, we have G′ ∈ Bπ
n and ρ(G) < ρ(G′). This is a contradiction.

Suppose that v1,1v1,i, v1,lv1,k ∈ E(G) (k > l ≥ 2). Then there exists v2,t ∈ V2

such that xv2,t = min
v2,i∈N(v1,1)

{xv2,i}, v1,1v2,t ∈ E(G) and v1,kv2,t /∈ E(G) since

d(v1,1) = d1 ≥ 3 and G is a bicyclic graph. Let

G′ = G− {v1,1v2,t, v1,lv1,k}+ {v1,1v1,l, v1,kv2,t}.
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Then G′ ∈ Bπ
n. Moreover, we claim that xv1,1 > xv1,k

or xv1,l > xv2,t (Otherwise,
xv1,1 = xv1,l

= xv1,k
= xv2,t . By Lemma 3.5, it is impossible). Hence Lemma 2.2

implies that ρ(G) < ρ(G′). This is a contradiction.
Suppose that v1,1v1,i, v1,1v1,j ∈ E(G) for 2 ≤ i < j ≤ s1. We claim that i = 2

and j = 3.
Suppose that, i.e., i ̸= 2 or j ̸= 3. If i ̸= 2, since d(v1,2) ≥ d(v1,i) ≥ 2 and G is a

bicyclic graph, there exists v2,t ∈ V2 such that v1,2v2,t ∈ E(G) and v1,iv2,t /∈ E(G).
Let

G′ = G− {v1,1v1,i, v1,2v2,t}+ {v1,1v1,2, v1,iv2,t}.
Then G′ ∈ Bπ

n. Moreover, recall that xv1,1
> xv2,t

and xv1,2 ≥ xv1,i . Lemma 2.2
implies that ρ(G) < ρ(G′). This is a contradiction.

Similarly, if j ̸= 3, since d(v1,3) ≥ d(v1,j) ≥ 2, there exists v2,t ∈ V2 such that
v1,3v2,t ∈ E(G) and v1,jv2,t /∈ E(G). Let

G′ = G− {v1,1v1,j , v1,3v2,t}+ {v1,1v1,3, v1,jv2,t}.

Then G′ ∈ Bπ
n and ρ(G) < ρ(G′). This is a contradiction too.

(b) |E(G[V1])| = 1.

First, similar to the proof of Case 1 (i) in Lemma 3.8, we claim that v1,1v1,2 ∈ E(G).
Hence, without loss of generality, we may assume that C1 = v0,1v1,1v1,2v0,1. Let

vk,l be the smallest height among vertices in V (C2), i.e., h(vk,l) = k ≤ h(v) for any
v ∈ V (C2). Then there are four cases:

(1) vk,l = v0,1.
Since C1 and C2 are two independent cycles in G, there exist v1,i ∈ V1 (i ≥ 3)
and v2,j ∈ V2 such that v1,iv2,j ∈ E(C2). On the other hand, since d0 = |V1| ≥ 4,
d(v1,1) = d1 ≥ 3 and d(v1,i) ≥ 2 for 2 ≤ i ≤ |V1|, there exist v1,s ∈ V1 (s ̸= i) and
v2,t ∈ V2 such that v1,sv2,t ∈ E(G) but v1,sv2,t /∈ E(C2). Let

G1 = G− {v1,iv2,j , v1,sv2,t}+ {v1,iv1,s, v2,jv2,t}.

Then G1 ∈ Bπ
n. If s = 1, then similarly we claim that xv1,s > xv2,j or xv1,i > xv2,t

.
Hence Lemma 2.2 implies that ρ(G) < ρ(G1) yielding a contradiction. If s ̸= 1, since
xv1,s

≥ xv2,j
and xv1,i

≥ xv2,t
, Lemma 2.2 implies that ρ(G) ≤ ρ(G1). Moreover,

since v1,1v1,2, v1,iv1,s ∈ E(G1), using the same argument as in Subcase (a) (on G1),
we can obtain a contradiction too.

(2)vk,l = v1,1.
There exists v2,t ∈ V2 such that v1,1v2,t ∈ E(C2). Since d(v0,1) = d0 ≥ 4 and
d(v1,i) ≥ d(v2,t) ≥ 2, there exist v1,i (i ≥ 3) and v2,j such that v1,iv2,j ∈ E(G) but
v1,iv2,j /∈ E(C2). Let

G′ = G− {v1,1v2,t, v1,iv2,j}+ {v1,1v1,i, v2,tv2,j}.

Then G′ ∈ Bπ
n. Moreover, recall that xv1,1 > xv2,j and xv1,i ≥ xv2,t . Lemma 2.2

implies that ρ(G) < ρ(G′). This is a contradiction.
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(3) vk,l = v1,2.
Similarly, there exist v1,i (i ≥ 3), v2,j and v2,t such that v1,2v2,t ∈ E(C2), v1,iv2,j ∈
E(G) but v1,iv2,j /∈ E(C2). Let

G1 = G− {v1,2v2,t, v1,iv2,j}+ {v1,2v1,i, v2,tv2,j}.

Clearly, G1 ∈ Bπ
n and ρ(G) ≤ ρ(G1). Moreover, since v1,1v1,2, v1,2v1,i ∈ E(G1),

using the same argument as in Subcase (a) (on G1), we can obtain a contradiction
too.

(4) vk,l /∈ {v0,1, v1,1, v1,2}.
There exists vk+1,t ∈ Vk+1 such that vk,lvk+1,t ∈ E(C2). Note that |E(G[V1])| = 1
and |E(G[Vi])| = 0 for 2 ≤ i ≤ k. Thus |Vk| ≥ d0 − 1 ≥ 3. Then there exist vk,i
(i ̸= l) and vk+1,j (j ̸= t) such that vk,ivk+1,j ∈ E(G) but vk,ivk+1,j /∈ E(C2). Let

G∗ = G− {vk,lvk+1,t, vk,ivk+1,j}+ {vk,lvk,i, vk+1,tvk+1,j}.

Then G∗ ∈ Bπ
n. Moreover, since xvk,l

≥ xvk+1,j
and xvk,i

≥ xvk+1,t
, Lemma 2.2

implies that ρ(G) ≤ ρ(G∗). Clearly, the smallest height of C2 in G∗ is less than k.
Furthermore, by repeating the argument of (4), we will got a case referred to (1),
(2) or (3). Thus G is not a bicyclic graph with maximum spectral radius among all
graphs in Bπ

n. This is a contradiction.

Case 2. vr,q = v1,1.

There exists v2,t ∈ V2 such that v1,1v2,t ∈ E(C1 ∪ C2). Since d0 ≥ 4 and
E(G[V1]) = 0, there exist v1,i ∈ V1 (i ≥ 2) and v2,j ∈ V2 such that v1,iv2,j ∈ E(G)
but v1,iv2,j /∈ E(C1 ∪ C2). Let

G′ = G− {v1,1v2,t, v1,iv2,j}+ {v1,1v1,i, v2,tv2,j}.

Then G′ ∈ Bπ
n. Moreover, recall that xv1,1 > xv2,j and xv1,i ≥ xv2,t . Lemma 2.2

implies that ρ(G) < ρ(G′). This is a contradiction.

Case 3. vr,q ̸= v0,1, v1,1.

There exists vr+1,t ∈ Vr+1 such that vr,qvr+1,t ∈ E(C1∪C2). Recall that there is
no edge in G[Vi] for 0 ≤ i ≤ r. Thus |Vr| ≥ d0 ≥ 4. Then there exist vr,i ∈ Vr (i ̸= q)
and vr+1,j ∈ Vr+1 (j ̸= t) such that vr,ivr+1,j ∈ E(G) but vr,ivr+1,j /∈ E(C1 ∪ C2).
Let

G∗ = G− {vr,qvr+1,t, vr,ivr+1,j}+ {vr,qvr,i, vr+1,tvr+1,j}.

Then G∗ ∈ Bπ
n. Moreover, since xvr,q ≥ xvr+1,j and xvr,i ≥ xvr+1,t , Lemma 2.2

implies that ρ(G) ≤ ρ(G∗). Clearly, the smallest height of the cycles in G∗ is less
than r. Furthermore, by repeating the argument of Case 3, or Cases 1 and 2. It is
easy to know that G is not a bicyclic graph with maximum spectral radius among
all graphs in Bπ

n. This is a contradiction.

From the above discussions, the proof is completed. 2



438 J. Li and W. C. Shiu

Combining Lemmas 3.12, 3.13 and 3.14, we have the following result.

Theorem 3.15. Let π = (d0, d1, . . . , dn−1) be bicyclic graphic. Then B∗
π is the

only bicyclic graph which has maximum spectral radius among all graphs in Bπ
n.

Let Bn be the set of all bicyclic graphs of order n, Bn,k be the set of all bicyclic
graphs of order n with k pendent vertices and Bπ

n,k be the set of all bicyclic graphs of
order n with k pendent vertices and degree sequence π = (d0, d1, . . . , dn−1). Thus
dn−k−1 > 1 and dn−k = · · · = dn−1 = 1. If 1 ≤ k ≤ n − 5, then it is easy to
see that for each degree sequence π of bicyclic graph with k pendent vertices, we
have π � π′, where π′ = (k + 4, 2, . . . , 2︸ ︷︷ ︸

n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k

). Moreover, Lemma 3.12 implies

that B∗
π′ is the bicyclic graph with maximum spectral radius among all graphs in

Bπ′

n . If k = n − 4, then there is only one bicyclic graph B∗ with degree sequence
π∗ = (n− 1, 3, 2, 2, 1, . . . , 1︸ ︷︷ ︸

n−4

). Hence, by Theorem 3.6, we have the following result.

Theorem 3.16. Let G ∈ Bn,k. Then ρ(G) ≤ ρ(B∗
π′) for 1 ≤ k ≤ n − 5, and the

equality holds if and only if G ∼= B∗
π′ , where π′ = (k + 4, 2, . . . , 2︸ ︷︷ ︸

n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k

); and

ρ(G) = ρ(B∗) for k = n− 4.

When 1 ≤ k ≤ n−6. It is easy to check that π′ = (k+4, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k

)�π′′ =

(k + 5, 2, . . . , 2︸ ︷︷ ︸
n−k−2

, 1, . . . , 1︸ ︷︷ ︸
k+1

). Then Theorem 3.6 implies that ρ(B∗
π′) < ρ(B∗

π′′). Hence

ρ(B∗
π′) is an increasing function for 1 ≤ k ≤ n− 5. Moreover, when k = n− 5 there

is only one bicyclic graph B+ with degree sequence (n− 1, 2, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−5

). He et

al. [7] proved that ρ(B+) < ρ(B∗). Then by Theorem 3.16, we have the following
theorem.

Theorem 3.17.([7]) Let G ∈ Bn. Then ρ(G) ≤ ρ(B∗), and the equality holds if
and only if G ∼= B∗. Moreover, if G ∈ Bn and G ̸= B∗, then ρ(G) ≤ ρ(B+), and
the equality holds if and only if G ∼= B+.
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Figure 1: G and G′ in Lemma 2.2
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Figure 2: Original graph and its relabeled graph, where V1 = {v0}, V2 =
{v1, v2, v3, v4, v5} and V3 = {v6, v7, v8, v9, v10, v11, v12, v13, v14}
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Figure 3: Spiral like disposition with respect to the cycle C (On the left)
staring from v3 that is adjacent to v0
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