• Title/Summary/Keyword: uniaxial tests

Search Result 530, Processing Time 0.024 seconds

함수상태에 따른 제주도 현무암의 역학적 특성 (Mechanical Characteristics of Basalt in Jeju Island with Relation to Moisture Condition)

  • 박상렬;문경태
    • 한국지반공학회논문집
    • /
    • 제36권7호
    • /
    • pp.29-40
    • /
    • 2020
  • 본 연구는 제주도 현무암의 함수상태가 역학적 특성에 미치는 영향을 평가하기 위하여 다양한 실내시험을 수행하였다. 시험편은 제주 북서부의 상가리와 어음리에서 채취한 현무암으로 각각 20개씩 제작하였다. 시험은 포화 및 건조상태로 구별하여 진행하였으며, 이를 바탕으로 함수상태에 따른 물성 및 역학적 특성간의 관계를 고찰하였다. 기존 연구결과들과 함께 분석한 결과, 포화상태의 경우 건조상태보다 일축압축강도, 압열인장강도 및 탄성계수가 비슷한 비율로 감소함을 알 수 있었다. 또한 압열인장강도와 일축압축강도는 선형비례관계에 있으며, 함수상태는 이 관계에 큰 영향을 주지 않았다.

2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests

  • Vaziri, Mojtaba Rabiei;Tavakoli, Hossein;Bahaaddini, Mojtaba
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.117-133
    • /
    • 2022
  • Determination of the mechanical behaviour of jointed rock masses has been a challenge for rock engineers for decades. This problem is more pronounced for non-persistent jointed rock masses due to complicated interaction of rock bridges on the overall behaviour. This paper aims to study the effect of a non-persistent joint set configuration on the mechanical behaviour of rock materials under both uniaxial and biaxial compression tests using a discrete element code. The numerical simulation of biaxial compressive strength of rock masses has been challenging in the past due to shortcomings of bonded particle models in reproducing the failure envelope of rock materials. This problem was resolved in this study by employing the flat-joint contact model. The validity of the numerical model was investigated through a comprehensive comparative study against physical uniaxial and biaxial compression experiments. Good agreement was found between numerical and experimental tests in terms of the recorded peak strength and the failure mode in both loading conditions. Studies on the effect of joint orientation on the failure mode showed that four zones of intact, transition to block rotation, block rotation and transition to intact failure occurs when the joint dip angle varies from 0° to 90°. It was found that the applied confining stress can significantly alter the range of these zones. It was observed that the minimum strength occurs at the joint dip angle of around 45 degrees under different confining stresses. It was also found that the joint orientation can alter the post peak behaviour and the lowest brittleness was observed at the block rotation zone.

Obtaining equivalent fracture toughness of concrete using uniaxial compression test

  • Li, Zongjin;Zhao, Yanhua
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.387-402
    • /
    • 2010
  • From typical stress-axial strain curve and stress-volume strain curve of a concrete under uniaxial compression, the initiation and localization of microcracks within the interior of the specimen can be identified. The occurrence of random microcrack indicates the end of the linear elasticity, and the localization of microcrack implies formation of major crack, which triggers the onset of unstable crack propagation. The interval between initiation and localization of microcracks is characterized by a stable microcrack growth. Based on fracture behavior observed from a uniaxial compressive test of a concrete cylinder, a model has been developed to extract fundamental fracture properties of a concrete, i.e. the equivalent fracture toughness and the size of fracture process zone. The introduction of cracking Poisson's ratio accounts for tensile failure characteristics of concrete even under uniaxal compression. To justify the validity of the model proposed, tests on three-point bending have been performed to obtain the fracture toughness in accordance with two parameter fracture model and double-K fracture model. Surprisingly, it yields favorably comparable results and provides an encouraging alternative approach to determine fracture properties for concretes.

고압분사공법에 의한 지반개량에 관한 연구 (A Study on Soil Improvement by Using High Pressure Grouting)

  • 유장현;조남준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.998-1004
    • /
    • 2005
  • U.J.S.(Ultra Jetting System) is a new ground improvement method registered as a Utility Model No.0205798, which has fundamentally improved the existing jetting method of J.S.P.(Jumbo Special Pattern System). In this study, the uniaxial compressive strengths of improved soil-grout structures by U.J.S. and J.S.P. which have been conducted on the construction site are compared. Also, the differences between the U.J.S. and J.S.P. are analyzed by considering the role of the auger bit, the injection distance measured from the axis of boring tubes, and angle of injection measured from the horizontal. The specimens of soil-grout structures are taken from the improved soils by using the U.J.S. and J.S.P. The uniaxial tests for the samples are conducted after the curing period of 28 days. The uniaxial compressive strengths and the coefficients of elasticity of surface and distance from the axis of boring. This study shows that the mean strength of the improved structure by J.S.P. is 1.9 times greater than by J.S.P.

  • PDF

Stress corrosion index of Kumamoto andesite estimated from two types of testing method

  • Jeong Hae-Sik;Nara Yoshitaka;Obara Yuzo;Kaneko Katsuhiko
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.221-228
    • /
    • 2003
  • The stress corrosion index of Kumamoto andesite are evaluated by two types of testing method. One is the uniaxial compression test under various water vapor pressures, and the other is the double torsion (DT) test under a constant water vapor pressure. For the uniaxial compression tests, the uniaxial compressive strength increases linearly with decreasing water vapor pressure on the double logarithmic coordinates. As the results, the stress corrosion index obtained is estimated 44. On the other hand, in the DT test, the relaxation (RLX) test and the constant displacement rate (CDR) test were conducted. For the CDR test, as the displacement rate of loading point increases, the crack velocity increases. However, the fracture toughness is constant regardless of the change in displacement rate and the average fracture toughness is evaluated $2.07MN/m^{3/2}$. For the RLX test, the crack velocity-stress intensity factor curves are smooth and linear. The stress corrosion index estimated from the curves is 37. Comparing stress corrosion indexes in the uniaxial compression test and the DT test, there is no significant difference in these values, and they are considered to be in coincident each other regardless of testing methods. Therefore, it is concluded that stress corrosion is one of material constants of rock.

  • PDF

몽크만·그랜트관계에 기초한 소형펀치 크리프시험 데이터와 일축 크리프시험 데이터의 관계 (Relationship Between Small-punch Creep Test Data and Uniaxial Creep Test Data based on the Monkman-Grant Relation)

  • 김범준;손일선;임병수
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.809-814
    • /
    • 2013
  • The relationship between the small-punch creep test and the conventional creep test was investigated experimentally using a method similar to that of the Monkman-Grant relationship. Uniaxial and small-punch creep rupture tests were carried out on 9Cr-2W ferritic steel (Commercial Grade 92 steel: X10CrWMoVNb 9-2) at elevated temperatures. From the relation derived in the same manner as the Monkman-Grant relation, a correlation between the displacement rate in response to the small-punch creep test and the strain rate in the uniaxial creep test was found, and the creep life was calculated using this relation. Furthermore, the failure modes of the small punch creep test specimens were investigated to show that the fracture was caused by creep.

Brazilian시험을 이용한 일축압축강도와 탄성계수의 추정(II) (Estimation of Uniaxial Compressive Strength and Elastic Modulus from Brazilian Test)

  • 민덕기;문종규;노재술
    • 한국지반공학회논문집
    • /
    • 제25권8호
    • /
    • pp.65-76
    • /
    • 2009
  • 본 연구는 Brazilian 시험결과를 매개로 일축압축강도와 탄성계수를 추정할 수 있는 경험식을 화성암의 대부분을 구성하는 화강암, 안산암 및 유문암을 대상으로 도출하였다. 기존 간편식(점하중 강도지수, Schmidt hammer 타격법)으로 도출된 결과와 비교, 검정을 하여 좋은 상관성과 신뢰성을 확인하였기에 Brazilian 시험은 일축압축강도와 탄성계수를 추정할수 있는 또 하나의 간접방법으로 사료된다. 특히 지질 조사시 얻은 제한된 코어로 인하여 직접시험이 어려운 경우에도 본 연구에서 제시하는 방법이 효율성이 있을 것으로 사료된다.

취성재료의 손상후 잔류강도 평가 (Evaluation of Residual Strength in Damaged Brittle Materials)

  • 신형섭;오상엽;서창민
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

소형펀치 시험법을 이용한 Al 2024 ECAP 재료의 강도특성 평가 (Assessment of Strength Characteristics of Al 2024 ECAP Metal Using Small Punch Testing)

  • 마영화;최정우;김선화;윤기봉
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.8-17
    • /
    • 2006
  • When subjected to severe shear deformation by ECAP, microstructure of Al2024 becomes extremely refined. To measure the strength of that, small punch(SP) testing method was adopted as a substitute for the conventional uniaxial tensile testing because the size of material processed by ECAP were limited to ${\psi}12\;mm$ in transverse direction. SP tests were performed with specimens in longitudinal and transverse directions of Al2024 ECAP metal. For comparing the strength values with those assessed by SP tests, uniaxial tensile tests were also conducted with specimens in longitudinal direction. Failure surfaces of the tested SP specimens showed that failure mode was shear deformation and Al 2024 ECAP metal has an anisotropy in strength. Thus, conventional equations proposed for assessing the strength characteristics were improper to assess those of Al2024 ECAP metal. In this paper a way of assessing the strength of Al 2024 ECAP metal was proposed and was proven to be effective.

시료의 채취 방식에 따른 교란도 평가 (Evaluation of Disturbance of Clay Samples Due to Sampling Methods)

  • 윤여원;김영진;최은호
    • 한국지반환경공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.27-31
    • /
    • 2008
  • 본 연구는 직경 225mm의 KICT 대구경 샘플러와 NX size 피스톤 샘플러를 사용하여 채취한 점토시료의 강도정수를 비교하여 대구경 샘플러가 NX size 피스톤 샘플러에 비해 원지반 상태를 얼마나 잘 반영하는가를 평가하는데 그 목적이 있다. 이 연구를 위하여 두 가지 샘플러로 채취한 점토 시료를 동일 조건에서 표준압밀시험, 일축압축시험, 삼축압축시험을 수행하여 채취 시료의 교란도 분석을 하였다. 분석결과 초기간극비와 선행압밀응력 뿐만 아니라 시료의 일축 및 삼축압축 시험에 의한 강도정수도 KICT 대구경 샘플러에 의한 시료가 약 10% 이상 높게 나타났다.

  • PDF