• Title/Summary/Keyword: ungaged basins

Search Result 22, Processing Time 0.025 seconds

The Developmet and Application of GIS-Based Geomorpho-Hydrological Watershed Model (G2WMS) (GIS기반 지형수문유역모의 모형의 개발 및 적용 연구)

  • Kim, Hong-Tae;Shin, Hyun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.123-133
    • /
    • 2009
  • In this study, we developed the GIS-based Geomorpho-hydrological Watershed Modeling System($G^{2}WMS$) which could consider both nonlilear rainfall-runoff relationship based on Geomorpho-Climatic Unit Hydrograph(GCUH) as well as watershed system inducing river routing. The developed new model was calibrated at the gaged rainfall events at natural watersheds and previewed to apply at the ungaged mountain basins, such as Sulma basin for small mountain basin and Andong-Dam basin for large scale basin, compared single with partitioned basin in the observed unit hydrographs and rainfall-discharge events. Finally, at the large scale Andong dam basin, we concluded that partitioned basin cases which including th nonlinear GCUH and river routing methods were superior to single basins which including the traditional methods in rainfall-discharge simulation at the mountain basins.

Runoff Analysis and Assessment Using Land Surface Model on East Asia (지표수문해석모형을 활용한 동아시아 유출해석 및 평가)

  • Son, Kyung-Hwan;Lee, Moon-Hwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.165-178
    • /
    • 2012
  • The objective of this study is to evaluate the applicability of Land Surface Model (LSM) for estimating the runoff on East Asia. Global geographical and weather data are used as input for the model and for the model verification, the simulated runoff results are compared with observed data from 34 global observation stations provided by Global Runoff Data Center (GRDC). K$\ddot{o}$ppen's climate zone is used to calculate the model parameter for ungaged basins. As a result, the simulated runoff shows good performance comparing with observed data in 17 basins assumed as ungaged basins. The Hydrologic components on East Asia area are estimated from the model and the continental water balance components are seasonally similar to each country. Also, it reveals that runoffs from southern China, Japan and Taiwan are much higher than those from mongolian and northern China.

Estimation of Runoff Depth and Peak Discharge by SCS Curve Numbers and Time Variation of curve Numbers (SCS곡선번호에 의한 유출고 및 첨두유량의 산정과 곡선번호의 시변성)

  • 윤태훈
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.87-95
    • /
    • 1992
  • The validity of the estimate of runoff depth and peak runoff by the basin runoff curve numbers(CN-II for AMC-II condition and CN-III for AMC-III condition) obtained from hydrologic soil-cover complexs is investigated by making use of the observed curve numbers(median curve number and optimum curve number) computed from rainfall-runoff records. For gaged basins the median curve numbers are recommended for the estimation of runoff depth and peak runoff. For ungaged basins, found is that for the estimate of runoff depth CN-III is adequate and for the peak runoff CN-II is adequate. Also investigated is the variation of curve numbers during rainfall, which is turned out to improve the estimates of both depth and peak of runoff.

  • PDF

RUNOFF ANALYSIS BY SCS CURVE NUMBER METHOD

  • Yoon, Tae-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.21-32
    • /
    • 1993
  • The estimates of both runoff depth and peak runoff by the basin runoff curve numbers, which are CN-II for antecedent moisture condition- II and CN -III for antecedent moisture condition-III, obtained from hydrological soil-cover complexes of 26 watersheds are investigated by making use of the observed curve numbers, which are median curve number and optimum curve number, computed from 250 rainfall-runoff records. For gaged basins the median curve numbers are recommended for the estimation of both runoff depth and peak runoff. For ungaged basin, found is that for the estimate of runoff depth CN-II is adequate and for peak runoff CN-II is suitable. Also investigated is the variation of the runoff curves during storms. By the variable runoff curve numbers, the prediction of runoff depth and peak runoff can be improved slightly.

  • PDF

Hydrological Studies on the Comparison and the Derivation of Unit Hydrography in the small River Systems. (소하천수계의 단위유량도 유도 및 비교에 관한 수문학적 고찰)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.3
    • /
    • pp.4739-4749
    • /
    • 1978
  • This studies were conducted to derive synthetic unitgraphs and triangular unitgraphs correlated with watershed characteristics which can be used to the estimation and control of flood for the rational development of Agricultural water resources. Derived Synthetic unitgraphs and Triangular unitgraphs can be applied to the ungaged watersheds were compared with average unitgraphs by observed data. Seven small watersheds were selected as studying basins Han, Geum, Nakdong, Yeongsan and Inchon river system. The results summarized for these studies are as follows: 1. Average unitgraphs by observed data and dimensionless unitgraphs for synthesis were derived for all river systems. 2. Peak discharge per unit area of the unitgraph, qp, was derived as qp=10-0.389-0.0424Lg with a high significance. 3. Formulas for the base width of unitgraph of 50 and 75 percent for peak flow for each water systems was adopted as Table 5. 4. The base length of the unitgraph, Tb, in hours in connection with time to peak, Tp, in hours was expressed as Tb =4.3Tp. 5. Peak discharge, Qp, were obtained as Table 6 by the Triangular form to all subwatersheds. 6. Relative errors in the peak discharge of the synthetic unitgraphs showed to be 7.3 percent to the peak of observed average unitgraphs except errors of peak discharge for Yeongsan river system. This indicates that Synthetic unitgraphs for the small watersheds of Han, Geum, Nakdong and Inchon river systems can be applied to the ungaged watersheds. On the other hand, It was confirmed that the accuracy of Instantaneous Unit Hydrograph with only 1.6 percent as relative errors was approaching more closely to the observed average unitgraph than that of synthetic unitgraph with relative errors. 23.9 percent for Yeongsan river system. 7. Errors in the peak discharge of the triangular unitgraph to the observed average unitgraph showed to be 0.6 percent to 7.5 percent which can be regarded as a high precision within the range of 200 to 500$\textrm{km}^2$ in area. On the contrary, application of triangular unitgraph within the range of 200$\textrm{km}^2$ in area has defined as a unsuitable method because of high relative errors, 26.4 percent to 61.6 percent.

  • PDF

Rainfall-Runoff Analysis by Calculation of the Time Distribution Models for Storms (降雨의 時間 分布模型 算定에 의한 降雨-流出 解析)

  • 민경형;이영대
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.189-201
    • /
    • 1996
  • The main objective of this study is to determine the time distribution models of rainfall in Korea for estimating design floods and to suggest new runoff model(Geomorphologic Instantaneous Unit Hydrograph; GIUH) in order to be easily use the rainfall-runoff model put rainfall models practice to be suitable for the regional characteristics of hydrologic situation by practicing engineers. As a result, the reappearance of triangular hyetograph and GIUH runoff model showed promising. The historical data from about 13,000 event-rainfalls and 73 rainfall-runoff measuring data during 12 years in International Hydrological Program (IHP) basins have been used to determine the statistical factors of the time distribution for rainfalls by the Yen-Chow, Huff, Pilgrim-Cordery and Mononobe models. The Rational, Kajiyama, Nakayasu and Clark model and GIUH model that this study runoff model were used for the purpose of application limit for basin area against design concept by the estimation of flood runoff and the derivation of empirical equations to estimate the parameters for ungaged basins.

  • PDF

Analysis of the Effect of Water Budget Elements on Flow Duration Characteristics using SWAT-Nak Dong (낙동강유역 SWAT 모형 구축 및 물수지 시나리오에 따른 유황분석)

  • Shin, Hyun-Suk;Kang, Du-Kee;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.251-263
    • /
    • 2007
  • In this paper, we constructed the integrated watershed model system, SWAT-Nak Dong that include areal mean precipitaiton, runoff and water balance components in the Nak Dong river basins and with this model system we are capable of estimating streamflows for ungaged river stations and analyzing the variations of the streamflows. SWAT(Soil and Water Assessment Tool) is a conceptual, continous time model that was developed in the early 1990s to assist water resource managers in assessing the impact of management and climate on water supplies and non-point source pollution III watersheds and large river basins. Using the SWAT-Nak Dong system and various scenarios, we analyzed and evaluated the dams and water uses effects on the streamflows.

Parameter Estimation of Tank Model by Data Interval and Rainfall Factors for Dry Season (건기 실측간격, 강우인자에 따른 탱크모형 매개변수 추정)

  • Park, Chae Il;Baek, Chun Woo;Jun, Hwan Don;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.856-864
    • /
    • 2006
  • For estimating the minimum discharge to maintain a river, low flow analysis is required and long term runoff records are needed for the analysis. However, runoff data should be estimated to run a hydrologic model for ungaged river basin. For the reason, parameter estimation is crucial to simulate rainfall-runoff events for those basins using Tank model. In this study, only runoff data recorded for dry season are used for parameter estimation, which is different to other methods based on runoff data recorded for wet and dry seasons. The Harmony Search algorithm is used to determine the optimum parameters for Tank model. The coefficient of determination ($R^2$) is served as the objective function in the Harmony Search. In cases that recorded data are insufficient, the recording interval is changed and Empirical CDF is adopted to analyze the estimated parameters. The suggested method is applied to Yongdam dam, Soyanggang dam, Chungju dam and Seomjingang dam basins. As results, the higher $R^2s$ are obtained when the shorter recording interval, the better recorded data quality, and the more rainfall events recorded along with certain rainfall amount is. Moreover, when the total rainfall is higher than the certain amount, $R^2$ is high. Considering the facts found from this study for the low flow analysis, it is possible to estimate the parameters for Tank model properly with the desired confidence level.

A Determination of Magnitude and Frequency of River Floods (하천 홍수량의 크기 및 빈도 결정)

  • Noh, Jae Sik;Lee, Kil Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.141-150
    • /
    • 1992
  • In this study, six gaging stations(T/M bureau) in the Han River basin were selected for flood frequency analysis and was carried out frequency analysis by POT(peaks Over a Threshold) model where existing flood data of short record length are available. Frequency and magnitudes of each station floods in the river basins were estimated by POT model based on statistical method, and also were compared with standard errors to verify applicability of the estimates by POT model. Furthermore, in order to evaluate for the adequate design flood which is needed for the design of the hydrologic structures in the ungaged watersheds, it is considered to be possible to develop the statistical regionalized model by regional frequency analysis.

  • PDF