• Title/Summary/Keyword: undrained shaft capacity

Search Result 4, Processing Time 0.02 seconds

Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles

  • Alzabeebee, Saif;Zuhaira, Ali Adel;Al-Hamd, Rwayda Kh. S.
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.397-404
    • /
    • 2022
  • Accurate prediction of the undrained shaft resistance is essential for robust design of bored piles in undrained condition. The undrained shaft resistance is calculated using the undrained adhesion factor multiplied by the undrained cohesion of the soil. However, the available correlations to predict the undrained adhesion factor have been developed using simple regression techniques and the accuracy of these correlations has not been thoroughly assessed in previous studies. The lack of the assessment of these correlations made it difficult for geotechnical engineers to select the most accurate correlation in routine designs. Furthermore, limited attempts have been made in previous studies to use advanced data mining techniques to develop simple and accurate correlation to predict the undrained adhesion factor. This research, therefore, has been conducted to fill these gaps in knowledge by developing novel and robust correlation to predict the undrained adhesion factor. The development of the new correlation has been conducted using the multi-objective evolutionary polynomial regression analysis. The new correlation outperformed the available empirical correlations, where the new correlation scored lower mean absolute error, mean square error, root mean square error and standard deviation of measured to predicted adhesion factor, and higher mean, a20-index and coefficient of correlation. The correlation also successfully showed the influence of the undrained cohesion and the effective stress on the adhesion factor. Hence, the new correlation enhances the design accuracy and can be used by practitioner geotechnical engineers to ensure optimized designs of bored piles in undrained conditions.

Characteristic study of bell-shaped anchor installed within cohesive soil

  • Das, Arya;Bera, Ashis Kumar
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.497-509
    • /
    • 2021
  • A large deformation FEM (Finite Element Method) based numerical analysis has been performed to study the behaviour of the bell-shaped anchor embedded in undrained saturated (cohesive) soil with the help of finite element based software ABAQUS. A typical model anchor with bell-diameter of 0.125 m, embedded in undrained saturated soil with varying cohesive strength (from 5 kN/m2 to 200 kN/m2) has been chosen for studying the characteristic behaviour of the bell-shaped anchor installed in cohesive soil. Breakout factors have been evaluated for each case and verified with the results of experimental model tests for three different types of soil samples. The maximum value of breakout factor was found as about 8.5 within a range of critical embedment ratio of 2.5 to 3. An explicit model has been developed to estimate the breakout factor (Fc) for uplift capacity of bell-shaped anchor within clay mass in terms of H/D ratio (embedment ratio). It was also found that, the ultimate uplift capacity of the anchor increases with the increase of the value of cohesive strength of the soil and H/D ratio. The empirical equation developed in the present investigation is usable within the range of cohesion value and H/D ratio from 5 kN/m2 to 200 kN /m2 and 0.5 to 3.0 respectively. The proposed model has been validated against data obtained from a series of model tests carried out in the present investigation. From the stress-profile analysis of the soil mass surrounding the anchor, occurrence of stress concentration is found to be generated at the joint of anchor shaft and bell. It was also found that the vertical and horizontal stresses surrounding the anchor diminish at about a distance of 0.3 m and 0.15 m respectively.

The UndrainBd Behavir or of Drilled Shaft Foundations Subjected to Static Inclined Loading (정적 경사하중을 받는 현장타설 말뚝기초의 비배수 거동)

  • ;Kulhawy, Fred H.
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.91-112
    • /
    • 1995
  • Drilled shafts are used increasingly as the foundations for many types of structures. However, very little knowledge of drilled shaft behavior under inclined load is available. In this study, a systematic experimental testing program was conducted to understand the undrained behavior of drilled shaft foundations under inclined loads. A semi-theoretical method of predicting the inclined capacity was developed through a parametric study of the variables such as shaft geometry and load inclination. Test parameters were chosen to be representative of those most frequently used in the electric utility industry. Short, rigid shafts with varying depth/diameter(D/B) ratios were addressed, and loading modes were investigated that includes exial uplift, inclined uplift, and inclined compression loads. Capacities were evaluated using the structural interaction formula and an equation developed from this experimental study. This new equation models the laboratory data well and is applicable for the limites field data.

  • PDF

Numerical study on basal heave stability of a circular vertical shaft constructed in clay (연약 점성토 지반에 시공되는 원형 수직구의 히빙 안정성에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.231-245
    • /
    • 2022
  • When vertical shafts are constructed in soft clay with low strength, there is a risk of basal heave, which causes the excavation surface to heave due to the low bearing capacity of the ground against the imbalance of earth pressure at the excavation surface. Methods of deriving a safety factor have been proposed to evaluate the stability against the basal heave. However, there are limitations in that it is difficult to accurately evaluate the heave stability because many assumptions are included in the theoretical derivation. In this study, assuming that a circular vertical shaft is constructed in soft clay, the existing safety factor equation proposed through a theoretical approach was supplemented. Bearing capacity according to the shaft geometry, inhomogeneity of the soil, and the effect of soil plug were considered theoretically and applied in a previous safety factor equation. A three-dimensional numerical analysis was conducted to simulate the occurrence of basal heave and review the supplemented equation through various case studies. Several series of case studies were conducted targeting various factors affecting heave stability. It was verified that the additionally considered characteristics were properly reflected in the supplemented equation. Furthermore, the effects of each factor constituting the safety factor equation were examined using the results of the numerical analysis performed by simulating various cases. It was confirmed that considering the undrained shear strength increment according to depth had the most significant effect on the calculation of the safety factor.