• Title/Summary/Keyword: underwater wall-ranging-ranging robot

Search Result 2, Processing Time 0.019 seconds

Design of an Adaptive Robust Nonlinear Predictive Controller (적응성을 가진 강인한 비선형 예측제어기 설계)

  • Park, Gee--Yong;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF

Robust Controller with Adaptation within the Boundary Layer Application to Nuclear Underwater Inspection Robot

  • Park, Gee-Yong;Yoon, Ji-Sup;Hong, Dong-Hee;Jeong, Jae-Hoo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improved control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement. Notational Conventions Vectors are written in boldface roman lower-case letters, e.g., x and y. Matrices are written in upper-case roman letters, e.g., G and B. And ∥.∥ means the Euclidean norm.